Mathematical modeling of the interaction of a single supersonic jet with obstacles
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 87-101
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents the results of mathematical modeling of the supersonic single jet interaction with obstacles. The calculations are performed using the developed solver based on Godunov's scheme and the method of linear reconstruction of solution in the OpenFOAM software package. The modified solver is tested on the problem of the supersonic jet interaction with a flat obstacle in the steady-state and self-oscillating modes. The calculated results on jets' structure and pressure distribution on the obstacle under a shock wave are in a good agreement with experimental and theoretical data of other authors. The interaction of the supersonic jet with obstacles is studied at a Mach number of 4 in the nozzle exit section. The angle of inclination of the flat surface and the shape of the curved surface are varied in the parametric studies. It is shown that with an increase in the angle of inclination of the flat obstacle, the maximum pressure increases, and the self-oscillating mode changes to a steady-state one. Pressure distributions along the curved obstacles with an angle of 5 and 1o degrees differ in pattern and level from those along the flat horizontal obstacles.
Keywords: OpenFOAM, mathematical modeling, gas dynamics, Godunov method, supersonic jet, OpenFOAM.
@article{VTGU_2020_63_a7,
     author = {A. A. Glazunov and A. M. Kagenov and K. V. Kostushin and I. V. Eremin and V. A. Kotonogov and K. L. Aligasanova},
     title = {Mathematical modeling of the interaction of a single supersonic jet with obstacles},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {87--101},
     year = {2020},
     number = {63},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a7/}
}
TY  - JOUR
AU  - A. A. Glazunov
AU  - A. M. Kagenov
AU  - K. V. Kostushin
AU  - I. V. Eremin
AU  - V. A. Kotonogov
AU  - K. L. Aligasanova
TI  - Mathematical modeling of the interaction of a single supersonic jet with obstacles
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 87
EP  - 101
IS  - 63
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a7/
LA  - ru
ID  - VTGU_2020_63_a7
ER  - 
%0 Journal Article
%A A. A. Glazunov
%A A. M. Kagenov
%A K. V. Kostushin
%A I. V. Eremin
%A V. A. Kotonogov
%A K. L. Aligasanova
%T Mathematical modeling of the interaction of a single supersonic jet with obstacles
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 87-101
%N 63
%U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a7/
%G ru
%F VTGU_2020_63_a7
A. A. Glazunov; A. M. Kagenov; K. V. Kostushin; I. V. Eremin; V. A. Kotonogov; K. L. Aligasanova. Mathematical modeling of the interaction of a single supersonic jet with obstacles. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 87-101. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a7/

[1] V. I. Zapryagaev, A. V. Solotchin, I. N. Kavun, D. A. Yarovskiy, “Leakage of a supersonic underexpanded jet on obstacles of various permeability”, Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 52:5 (2011), 60–67

[2] A. A. Dyadkin, V. P. Sukhorukov, G. A. Trashkov, V. F. Volkov, V. I. Zapryagaev, N. P. Kiselev, “Flow structure in the base region of re-entry vehicle with supersonic braking plumes impinging with landing surface”, 29th Congress of the International Council of the Aeronautical Sciences (7–12 September, St. Petersburg, 2014), 2014_0640

[3] V. I. Zapryagaev, N. P. Kiselev, S. G. Kundasev, “Flow structure during the interaction of a supersonic overexpanded jet with a flat inclined obstacle”, Vestnik PNIPU. Aerokosmicheskaya tekhnika — PNRPU Aerospace Engineering Bulletin, 2016, no. 45, 32–49 | DOI

[4] S. G. Kundasev, N. P. Kiselev, V. I. Zapryagaev, “Experimental investigation of the flow structure of the supersonic jet impinging on an inclined flat obstacle”, International Conference on the Methods of Aerophysical Research (ICMAR 2016), 2016, 1–10 | DOI

[5] A. A. Dyad'kin, V. P. Sukhorukov, S. P. Rybak, V. I. Zapryagaev, N. P. Kiselev, S. G. Kundasev, A. V. Sobolev, D. A. Gubanov, “Simulation of the reentry vehicle supersonic brake jets interection with landing surface”, 7th European Conference of Aeronautics and Space Sciences (EUCASS), 2017 | DOI

[6] M. F. Mel'nikova, Yu. N. Nesterov, “Effect of a supersonic non-calculated jet on a flat obstacle perpendicular to the axis of the jet”, Uchenye zapiski TSAGI — TsAGI Science Journal, 2:5 (1971), 44–58

[7] P. J. Lamont, B. L. Hunt, “The impingement of underexpanded axisymmetric jets on wedges”, Journal of Fluid Mechanics, 76 (1976), 307–336 | DOI

[8] P. J. Lamont, B. L. Hunt, “The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates”, Journal of Fluid Mechanics, 80 (1980), 471–511 | DOI

[9] G. F. Gorshkov, V. N. Uskov, “Osobennosti avtokolebanii, voznikayuschikh pri obtekanii ogranichennoi pregrady sverkhzvukovoi nedorasshirennoi struei”, Prikladnaya mekhanika i tekhnicheskaya fizika, 40:4 (1999), 143–149

[10] N. V. Dubinskaya, M. Ya. Ivanov, “On the calculation of the interaction of a supersonic jet of an ideal gas with a flat obstacle perpendicular to its axis”, Uchenye zapiski TSAGI — TsAGI Science Journal, 6:5 (1975), 38–44

[11] G. F. Gorshkov, V. N. Uskov, “Self-oscillations in supersonic overexpanded impact jets”, Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 43:5 (2002), 49–54

[12] F. S. Alvi, J. A. Ladd, W. W. Bower, “Experimental and computational investigation of supersonic impinging jets”, AIAA Journal, 40:4 (2002), 599–609 | DOI

[13] A. D. Savel'ev, “The use of composite compact high-order schemes in solving the problem of the interaction of a supersonic jet with a surface”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki — Computational Mathematics and Mathematical Physics, 53:10 (2013), 1746–1759 | MR | Zbl

[14] N. F. Kudimov, A. V. Safronov, O. N. Tret'yakova, “The results of experimental studies on the interaction of multiblock supersonic turbulent jets with an obstacle”, Trudy MAI, 2013, no. 69, 1–11

[15] N. F. Kudimov, A. V. Safronov, O. N. Tret'yakova, “Numerical simulation of the interaction of multiblock supersonic turbulent jets with an obstacle”, Trudy MAI, 2013, no. 70, 1–14

[16] N. F. Kudimov, A. V. Safronov, O. N. Tret'yakova, Applied problems of gas dynamics and heat transfer in power plants of rocket technology, Izdatel'stvo MAI, M., 2014

[17] V. G. Merkulov E. S. Degtyar', V. I. Hlybov, A. V. Safronov, “The results of computational and experimental studies of gas dynamic processes in the interaction of multi-block jets of rocket engines with a gas reflector of a launch facility”, Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 70:1 (2013), 37–45

[18] K. N. Volkov, V. N. Emel'yanov, V. A. Zazimko, Turbulent jets — statistical models and modeling of large eddies, Fizmatlit, M., 2014, 360 pp.

[19] K. N. Volkov, V. N. Emel'yanov, Computational technologies in the problems of fluid and gas mechanics, Fizmatlit, M., 2012

[20] V. G. Dulov, G. A. Luk'yanov, Gas dynamics of outflows, Nauka, Novosibirsk, 1984

[21] D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Inc., California, 1993, 460 pp.

[22] A. A. Glazunov, I. V. Kagenov A. M. Eremin, I. M. Tyryshkin, “Application of the OpenFOAM software package for calculating gas flows in nozzles and jets”, Izvestiya vysshikh uchebnykh zavedeni. Fizika, 56:9–3 (2013), 66–68

[23] A. A. Glazunov, I. V. Eremin, A. M. Kagenov, N. E. Kuvshinov, “Numerical study of the interaction of combustion products of spacecraft engines with streamlined surfaces on Mars”, Izvestiya vysshikh uchebnykh zavedeni. Fizika, 57:8–2 (2014), 97–103

[24] F. R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Begell House Inc., West Redding, 2003, 625–632

[25] Official OpenFOAM website

[26] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 315–344 | DOI | MR

[27] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Krayko, G. P. Prokopov, Numerical solution to multidimensional problems of gas dynamics, Nauka, M., 1976 | MR

[28] V. Venkatakrishnan, On the Accuracy of Limiters and Convergence to Steady-State Solutions, AIAA paper 93-0880, 1993, 11 pp. | DOI | Zbl