@article{VTGU_2020_63_a7,
author = {A. A. Glazunov and A. M. Kagenov and K. V. Kostushin and I. V. Eremin and V. A. Kotonogov and K. L. Aligasanova},
title = {Mathematical modeling of the interaction of a single supersonic jet with obstacles},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {87--101},
year = {2020},
number = {63},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a7/}
}
TY - JOUR AU - A. A. Glazunov AU - A. M. Kagenov AU - K. V. Kostushin AU - I. V. Eremin AU - V. A. Kotonogov AU - K. L. Aligasanova TI - Mathematical modeling of the interaction of a single supersonic jet with obstacles JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 87 EP - 101 IS - 63 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a7/ LA - ru ID - VTGU_2020_63_a7 ER -
%0 Journal Article %A A. A. Glazunov %A A. M. Kagenov %A K. V. Kostushin %A I. V. Eremin %A V. A. Kotonogov %A K. L. Aligasanova %T Mathematical modeling of the interaction of a single supersonic jet with obstacles %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 87-101 %N 63 %U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a7/ %G ru %F VTGU_2020_63_a7
A. A. Glazunov; A. M. Kagenov; K. V. Kostushin; I. V. Eremin; V. A. Kotonogov; K. L. Aligasanova. Mathematical modeling of the interaction of a single supersonic jet with obstacles. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 87-101. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a7/
[1] V. I. Zapryagaev, A. V. Solotchin, I. N. Kavun, D. A. Yarovskiy, “Leakage of a supersonic underexpanded jet on obstacles of various permeability”, Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 52:5 (2011), 60–67
[2] A. A. Dyadkin, V. P. Sukhorukov, G. A. Trashkov, V. F. Volkov, V. I. Zapryagaev, N. P. Kiselev, “Flow structure in the base region of re-entry vehicle with supersonic braking plumes impinging with landing surface”, 29th Congress of the International Council of the Aeronautical Sciences (7–12 September, St. Petersburg, 2014), 2014_0640
[3] V. I. Zapryagaev, N. P. Kiselev, S. G. Kundasev, “Flow structure during the interaction of a supersonic overexpanded jet with a flat inclined obstacle”, Vestnik PNIPU. Aerokosmicheskaya tekhnika — PNRPU Aerospace Engineering Bulletin, 2016, no. 45, 32–49 | DOI
[4] S. G. Kundasev, N. P. Kiselev, V. I. Zapryagaev, “Experimental investigation of the flow structure of the supersonic jet impinging on an inclined flat obstacle”, International Conference on the Methods of Aerophysical Research (ICMAR 2016), 2016, 1–10 | DOI
[5] A. A. Dyad'kin, V. P. Sukhorukov, S. P. Rybak, V. I. Zapryagaev, N. P. Kiselev, S. G. Kundasev, A. V. Sobolev, D. A. Gubanov, “Simulation of the reentry vehicle supersonic brake jets interection with landing surface”, 7th European Conference of Aeronautics and Space Sciences (EUCASS), 2017 | DOI
[6] M. F. Mel'nikova, Yu. N. Nesterov, “Effect of a supersonic non-calculated jet on a flat obstacle perpendicular to the axis of the jet”, Uchenye zapiski TSAGI — TsAGI Science Journal, 2:5 (1971), 44–58
[7] P. J. Lamont, B. L. Hunt, “The impingement of underexpanded axisymmetric jets on wedges”, Journal of Fluid Mechanics, 76 (1976), 307–336 | DOI
[8] P. J. Lamont, B. L. Hunt, “The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates”, Journal of Fluid Mechanics, 80 (1980), 471–511 | DOI
[9] G. F. Gorshkov, V. N. Uskov, “Osobennosti avtokolebanii, voznikayuschikh pri obtekanii ogranichennoi pregrady sverkhzvukovoi nedorasshirennoi struei”, Prikladnaya mekhanika i tekhnicheskaya fizika, 40:4 (1999), 143–149
[10] N. V. Dubinskaya, M. Ya. Ivanov, “On the calculation of the interaction of a supersonic jet of an ideal gas with a flat obstacle perpendicular to its axis”, Uchenye zapiski TSAGI — TsAGI Science Journal, 6:5 (1975), 38–44
[11] G. F. Gorshkov, V. N. Uskov, “Self-oscillations in supersonic overexpanded impact jets”, Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 43:5 (2002), 49–54
[12] F. S. Alvi, J. A. Ladd, W. W. Bower, “Experimental and computational investigation of supersonic impinging jets”, AIAA Journal, 40:4 (2002), 599–609 | DOI
[13] A. D. Savel'ev, “The use of composite compact high-order schemes in solving the problem of the interaction of a supersonic jet with a surface”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki — Computational Mathematics and Mathematical Physics, 53:10 (2013), 1746–1759 | MR | Zbl
[14] N. F. Kudimov, A. V. Safronov, O. N. Tret'yakova, “The results of experimental studies on the interaction of multiblock supersonic turbulent jets with an obstacle”, Trudy MAI, 2013, no. 69, 1–11
[15] N. F. Kudimov, A. V. Safronov, O. N. Tret'yakova, “Numerical simulation of the interaction of multiblock supersonic turbulent jets with an obstacle”, Trudy MAI, 2013, no. 70, 1–14
[16] N. F. Kudimov, A. V. Safronov, O. N. Tret'yakova, Applied problems of gas dynamics and heat transfer in power plants of rocket technology, Izdatel'stvo MAI, M., 2014
[17] V. G. Merkulov E. S. Degtyar', V. I. Hlybov, A. V. Safronov, “The results of computational and experimental studies of gas dynamic processes in the interaction of multi-block jets of rocket engines with a gas reflector of a launch facility”, Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 70:1 (2013), 37–45
[18] K. N. Volkov, V. N. Emel'yanov, V. A. Zazimko, Turbulent jets — statistical models and modeling of large eddies, Fizmatlit, M., 2014, 360 pp.
[19] K. N. Volkov, V. N. Emel'yanov, Computational technologies in the problems of fluid and gas mechanics, Fizmatlit, M., 2012
[20] V. G. Dulov, G. A. Luk'yanov, Gas dynamics of outflows, Nauka, Novosibirsk, 1984
[21] D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Inc., California, 1993, 460 pp.
[22] A. A. Glazunov, I. V. Kagenov A. M. Eremin, I. M. Tyryshkin, “Application of the OpenFOAM software package for calculating gas flows in nozzles and jets”, Izvestiya vysshikh uchebnykh zavedeni. Fizika, 56:9–3 (2013), 66–68
[23] A. A. Glazunov, I. V. Eremin, A. M. Kagenov, N. E. Kuvshinov, “Numerical study of the interaction of combustion products of spacecraft engines with streamlined surfaces on Mars”, Izvestiya vysshikh uchebnykh zavedeni. Fizika, 57:8–2 (2014), 97–103
[24] F. R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Begell House Inc., West Redding, 2003, 625–632
[25] Official OpenFOAM website
[26] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 315–344 | DOI | MR
[27] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Krayko, G. P. Prokopov, Numerical solution to multidimensional problems of gas dynamics, Nauka, M., 1976 | MR
[28] V. Venkatakrishnan, On the Accuracy of Limiters and Convergence to Steady-State Solutions, AIAA paper 93-0880, 1993, 11 pp. | DOI | Zbl