Evaluation of the stress and strain during transition layer formation between a particle and a matrix
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 60-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When manufacturing composites, a transition layer is formed between a particle and a matrix. The composition and width of the layer both depend on technological parameters of the process. Application of the appropriate model of transition layer formation makes it possible to study in dynamics the evolution of transition zone size and the properties of obtained materials depending on the synthesis conditions. In addition, a new phase formation and boundary movement are accompanied by diffusion resulting in the redistribution of concentrations. These processes cause diffusion (concentration) stresses due to a difference in the phases' properties and a difference in the diffusant mobility in the phases. The paper presents a model for estimating the stresses and strains during the transition layer formation between a spherical particle and a matrix. The model includes the problem of the reaction diffusion with the boundaries moving due to a new phase growth. In a quasi-steady-state approximation, the diffusion problem involves finding the concentration distribution in the regions of given sizes and the determining of the phase boundaries' position. The latter subproblem is solved numerically. It is followed by finding the concentration distribution. The problem of mechanical equilibrium is solved analytically. The resulting data depend on the position of the boundaries and distribution of the concentrations.
Keywords: transition layer, new phase, moving boundary, stresses, strains
Mots-clés : composite, concentration.
@article{VTGU_2020_63_a5,
     author = {M. A. Anisimova and A. G. Knyazeva},
     title = {Evaluation of the stress and strain during transition layer formation between a particle and a matrix},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {60--71},
     year = {2020},
     number = {63},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a5/}
}
TY  - JOUR
AU  - M. A. Anisimova
AU  - A. G. Knyazeva
TI  - Evaluation of the stress and strain during transition layer formation between a particle and a matrix
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 60
EP  - 71
IS  - 63
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a5/
LA  - ru
ID  - VTGU_2020_63_a5
ER  - 
%0 Journal Article
%A M. A. Anisimova
%A A. G. Knyazeva
%T Evaluation of the stress and strain during transition layer formation between a particle and a matrix
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 60-71
%N 63
%U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a5/
%G ru
%F VTGU_2020_63_a5
M. A. Anisimova; A. G. Knyazeva. Evaluation of the stress and strain during transition layer formation between a particle and a matrix. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 60-71. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a5/

[1] O. N. Krykkova, A. G. Knyazeva, V. M. Pogrebenkov, K. S. Kostikov, I. Sevostianov, “Effective thermal expansion coefficient of a sintered glass-eucryptite composite”, J. Mater Sci., 52 (2017), 11314–11325 | DOI

[2] A. G. Knyazeva, O. N. Krykkova, S. A. Lkrie, Y. O. Solyaev, A. A. Shavnev, “Intermediate layer formation between inclusion and matrix during synthesis of unidirectional fibrous composite”, International Conference on Physical Mesomechanics of Multilevel Systems, AIP Conference Proceedings, 1623, 2014, 263–266 | DOI

[3] C. Z. Wagner, “Beitrag zur theorie des anlaufvorgangs”, Phys. Chem., 21 (1933), 25–36 | DOI

[4] V. I. Dybkov, Solid state reaction kinetics, IPMS publications, Kyiv, 2013, 400 pp.

[5] Z. Erde'lyi, G. Schmitz, “Reactive diffusion and stresses in spherical geometry”, Acta Materialia, 60:4 (2012), 1807–1817 | DOI

[6] M. Rokssel, Z. Erde'lyi, G. Schmitz, “Reactive diffusion and stresses in nanowires or nanorods”, Acta Materialia, 131:1 (2017), 315–322 | DOI

[7] O. B. Kovalev, V. V. Belyaev, “Mathematical modeling of metallochemical reactions in a two-species reacting disperse mixture”, Combustion, Explosion, and Shock Waves, 49:5 (2013), 563–574 | DOI

[8] N. N. Nazarenko, A. G. Knyazeva, “Mechanical stress in spherulites in dissolution of calcium phosphate in biological fluids”, Physical Mesomechanics, 13:3 (2010), 95–99

[9] A. G. Knyazeva, Introduction to the local equilibrium thermodynamics of physicochemical transformations in deformable media, TSU Publ., Tomsk, 1996

[10] Yu. V. Sovetova, Yu. N. Sidorenko, V. A. Skripnyak, “Multiscale approach to estimation of effective properties of a composite with regard to its damaging”, Physical Mesomechanics, 16:5 (2013), 59–65

[11] Yu. V. Sovetova, Yu. N. Sidorenko, V. A. Skripnyak, “The multilevel approach to studying the influence of the volumetric ratio in components of unidirectional carbon fiber composite on its mechanical properties”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2(28), 77–89

[12] E. A. Nekrasov, V. K. Smolyakov, Yu. M. Maksimov, “Mathematical model of the combustion of a titanium carbon system”, Combustion, Explosion, and Shock Waves, 17:5 (1981), 39–46 | MR

[13] O. V. Lapshin, V. E. Ovcharenko, “A mathematical model of high-temperature synthesis of nickel aluminide Ni$_3$Al by thermal shock of a powder mixture of pure elements”, Combustion, Explosion, and Shock Waves, 32:2, 299–305 | DOI