@article{VTGU_2020_63_a4,
author = {T. G. Ergashev and N. J. Komilova},
title = {Holmgren problem for multudimensional elliptic equation with two singular coefficients},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {47--59},
year = {2020},
number = {63},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a4/}
}
TY - JOUR AU - T. G. Ergashev AU - N. J. Komilova TI - Holmgren problem for multudimensional elliptic equation with two singular coefficients JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 47 EP - 59 IS - 63 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a4/ LA - ru ID - VTGU_2020_63_a4 ER -
%0 Journal Article %A T. G. Ergashev %A N. J. Komilova %T Holmgren problem for multudimensional elliptic equation with two singular coefficients %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 47-59 %N 63 %U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a4/ %G ru %F VTGU_2020_63_a4
T. G. Ergashev; N. J. Komilova. Holmgren problem for multudimensional elliptic equation with two singular coefficients. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 47-59. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a4/
[1] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Dover Publications Inc., New York, 1958 | MR
[2] F. I. Frankl, Selected works on gas dynamics, Nauka, M., 1973
[3] M. M. Smirnov, Degenerate elliptic and hyperbolic equations, Nauka, M., 1966
[4] R. P. Gilbert, Function Theoretic Methods in Partial Differential Equations, Academic Press, New York–London, 1969, 308 pp. | MR | Zbl
[5] A. V. Bitsadze, Some classes of partial differential equations, Nauka, M., 1981
[6] C. Agostinelli, “Integrazione dell'equazione differenziale $u_{xx}+u_{yy}+u_{zz}+x^{-1}u_x =f$ e problema analogo a quello di Dirichlet per un campo emisferico”, Atti della Accademia Nazionale dei Lincei, 26:6 (1937), 7–8
[7] M. N. Olevskii, “Dirichlet problem solutions related to the equation $\Delta u + px_n^{-1}u_{{x_n}}=f$ for a hemispherical region”, Doklady Akademii nauk SSSR Reports of the Academy of Sciences of USSR, 64:6 (1949), 767–770
[8] T. G. Ergashev, “Holmgren problem for a multidimensional elliptic equation with one singular coefficient”, Byulleten' Instituta matematiki — Bulletin of the Institute of Mathematics, 2019, no. 2, 23–32
[9] M. S. Salakhiddinov, A. Hasanov, “On the theory of the multidimensional Gellerstedt equation”, Uzbekskiy matematicheskiy zhurnal — Uzbek Mathematical Journal, 2007, no. 3, 95–109 | Zbl
[10] A. K. Urinov, “On fundamental solutions for the some type of the elliptic equations with singular coefficients”, Nauchnyy vestnik Ferganskogo gosudarstvennogo universiteta — Scientific Records of the Fergana State University, 2006, no. 1, 5–11
[11] R. M. Mavlyaviev, I. B. Garipov, “Fundamental solution of multidimensional axisymmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 62:3 (2017), 287–296 | DOI | MR | Zbl
[12] I. T. Nazipov, “Solution of the special Tricomi problem for a singular mixed-type equation by the method of integral equations”, Russian Mathematics, 55:3 (2011), 61–76 | DOI | MR | Zbl
[13] M. S. Salakhiddinov, A. Hasanov, “On a boundary value problem for the generalized Tricomi equation”, Izvestiya Akademii Nauk UzSSR. Ser. fiz.-mat. nauk — Bulletin of the Academy of Sciences of the Uzbek SSR. Ser. of phys. and math. sciences, 1979, no. 6, 29–33 | Zbl
[14] E. T. Karimov, J. J. Nieto, “The Dirichlet problem for a 3D elliptic equation with two singular coefficients”, Computers and Mathematics with Applications, 62 (2011), 214–224 | DOI | MR | Zbl
[15] T. G. Ergashev, A. Hasanov, “Fundamental solutions of the bi-axially symmetric Helmholtz equation”, Uzbek Mathematical Journal, 2018, no. 1, 55–64 | MR
[16] J. L. Bkrchnall, T. W. Chakndy, “Expansions of Appell's double hypergeometric functions”, Quart. J. Math. (Oxford). Ser. 11, 1940, 249–270 | MR
[17] A. Hasanov, “On a mixed problem for the equation $\mathrm{sgn} y|y|^m u_{xx}+x^nu_{yy}=0$”, Izvestiya Akademii Nauk UzSSR. Ser. fiz.-mat. nauk — Bulletin of the Academy of Sciences of the Uzbek SSR. Ser. of phys. and math. sciences, 1982, no. 2, 28–32 | MR | Zbl
[18] D. Amanov, “Some boundary value problems for a degenerate elliptic equation in an unbounded domain”, Izvestiya Akademii Nauk UzSSR. Ser. fiz.-mat. nauk — Bulletin of the Academy of Sciences of the Uzbek SSR. Ser. of phys. and math. sciences, 1984, no. 1, 8–13 | MR | Zbl
[19] D. Amanov, “A boundary value problem for the equation $\mathrm{sgn} y|y|^m u_{xx}+x^nu_{yy}=0$”, Izvestiya Akademii Nauk UzSSR. Ser. fiz.-mat. nauk — Bulletin of the Academy of Sciences of the Uzbek SSR. Ser. of phys. and math. sciences, 1984, no. 2, 8–10 | MR | Zbl
[20] M. S. Salakhiddinov, E. T. Karimov, “Spatial boundary problem with the DirichletNeumann condition for a singular elliptic equation”, Applied Mathematics and Computation, 219 (2012), 3469–3476 | DOI | MR
[21] H. M. Srivastava, A. Hasanov, J. Cho, “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J. Math., 2:1 (2015), 1–10
[22] Berdyshev A.S, A. Hasanov, T. G. Ergashev, “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. II”, Complex Variables and Elliptic Equations, 2019, 1–19 | DOI | MR
[23] T. G. Ergashev, “Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Ufa Mathematical Journal, 10:4 (2018), 111–121 | DOI | MR
[24] T. G. Ergashev, “The fourth double-layer potential for a generalized biaxially symmetric Helmholtz equation”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika I mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 50, 45–56 | DOI
[25] T. G. Ergashev, “On fundamental solutions for multidimensional Helmholtz equation with three singular coefficients”, Computers and Mathematics with Applications, 77 (2019), 69–76 | DOI | MR
[26] A. K. Urinov, T. G. Ergashev, “Confluent hypergeometric functions of many variables and their application to finding fundamental solutions of the generalized Helmholtz equation with singular coefficients”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika I mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 55, 45–56 | DOI
[27] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. 1, McGraw-Hill Book Company, New York–Toronto–London, 1953 | MR