@article{VTGU_2020_63_a3,
author = {D. A. Tursunov and M. O. Orozov},
title = {Asymptotic solution of the {Dirichlet} problem for a ring, when the corresponding unperturbed equation has a regular special circle},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {37--46},
year = {2020},
number = {63},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a3/}
}
TY - JOUR AU - D. A. Tursunov AU - M. O. Orozov TI - Asymptotic solution of the Dirichlet problem for a ring, when the corresponding unperturbed equation has a regular special circle JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 37 EP - 46 IS - 63 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a3/ LA - ru ID - VTGU_2020_63_a3 ER -
%0 Journal Article %A D. A. Tursunov %A M. O. Orozov %T Asymptotic solution of the Dirichlet problem for a ring, when the corresponding unperturbed equation has a regular special circle %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 37-46 %N 63 %U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a3/ %G ru %F VTGU_2020_63_a3
D. A. Tursunov; M. O. Orozov. Asymptotic solution of the Dirichlet problem for a ring, when the corresponding unperturbed equation has a regular special circle. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 37-46. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a3/
[1] Chang-Yeol Jung, Roger Temam, “Singularly perturbed problems with a turning point: the noncompatatible case”, Analysis and Applications, 12:3, 293–321 | MR | Zbl
[2] V. F. Butuzov, “Asymptotic behavior and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation”, Izvestiya: Mathematics, 81:3 (2017), 481–504 | MR | Zbl
[3] Anastasia-Dimitra Lipitakis, “The numerical solution of singularly perturbed nonlinear partial differential equations in three space variables: the adaptive explicit preconditioning approach”, Modelling and Simulation in Engineering, 2019 | DOI
[4] Gung-Min Gie, Chang-Yeol Jung, “and Roger Temam Recent progresses in boundary layer theory”, Discrete and Continuous Dynamical Systems-A, 36:5 (2014), 2521–2583 | MR
[5] N. Levinson, “The first boundary value problem for $\varepsilon\Delta u+Au_x+Bu_y+Cu = D$ for small $\varepsilon$”, Ann. of Math., 51 (1950), 428–445 | MR | Zbl
[6] W. Eckhaus, “Boundary layers in linear elliptic singular perturbation problems”, SIAM Review, 14:2 (1972), 225–270 | MR | Zbl
[7] A. M. Il'in, Matching of asymptotic expansions of boundary problems, Nauka, M., 1989
[8] S. P. Zubova, V. I. Uskov, “Asymptotic solution of the Cauchy problem for a first-order equation with a small parameter in a banach space. The regular case”, Math Notes, 103 (2018), 395–404 | DOI | DOI | MR | Zbl
[9] E. M. Zverayaev, “The Saint-Venant–Picard–Banach method of integrating partial differential equations with a small parameter”, Keldysh Institute preprints, 2018, 083, 19 pp. | DOI
[10] V. I. Bimatova, N. V. Savkinaab, V. V. Faraponova, “Supersonic flow over a sharp cone and its aerodynamic characteristics for different models of turbulent viscosity”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 5(43), 35–42 | DOI
[11] D. A. Tursunov, “Asymptotics of the Cauchy problem solution in the case of instability of a stationary point in the plane of “rapid motions””, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 54, 46–57 | DOI
[12] D. A. Tursunov, “Asymptotic solution of linear bisingular problems with additional boundary layer”, Russian Mathematics, 62:3 (2018), 60–67 | DOI | MR | Zbl
[13] D. A. Tursunov, “The asymptotic solution of the bisingular Robin problem”, Siberian Electronic Mathematical Reports, 14 (2017), 10–21 | DOI | MR | Zbl
[14] D. A. Tursunov, “The generalized boundary function method for bisingular problems in a disk”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 2, 2017, 239–249 | DOI
[15] D. A. Tursunov, “Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 271–281
[16] D. A. Tursunov, U. Z. Erkebaev, “Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 1(39), 42–52 | DOI | MR
[17] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl