Abelian SACR-groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A homomorphism $\mu: G \otimes G \to G$ is called a multiplication on an abelian group $G$. An abelian group $G$ with a multiplication on it is called a ring on $G$. The study of abelian groups supporting only a certain ring is one of the trends in the additive group theory. An abelian group on which every ring is associative and commutative is called an SACR-group (this abbreviation comes from: “strongly associative and commutative ring”). In this paper, we study SACR-groups in the following classes of abelian groups: homogeneous completely decomposable quotient divisible groups and indecomposable torsion-free groups of rank $2$. Together with associative and commutative rings, we are also interested in additive groups of filial rings. An associative ring in which all meta-ideals of finite index are ideals is called filial. Certainly, an associative ring $R$ is called filial if the relation of being an ideal in $R$ is transitive. An abelian group on which every associative ring is filial is called a TI-group. In Section 1, homogeneous completely decomposable quotient divisible abelian SACR-groups are described (Theorem 7). The proof of this theorem is based on Theorem 4: every quotient divisible group of rank $1$ is an SACR-group. Further, in Section 3, it is shown that every indecomposable torsion-free group of rank 2 is an SACR-group. In particular, TI-groups are described in the class of indecomposable torsion-free abelian groups of rank $2$. It is shown that the concepts of a TI-group and a nil-group in the class of rank $2$ torsion-free indecomposable groups are equivalent. Until now, all known torsion-free TI-groups are SACR-groups. However, the converse is not true; an example is given in Section 3.
Keywords: abelian group, ring on group
Mots-clés : SACR-group, TI-group.
@article{VTGU_2020_63_a2,
     author = {T. K. T. Nguyen},
     title = {Abelian {SACR-groups}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {27--36},
     year = {2020},
     number = {63},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a2/}
}
TY  - JOUR
AU  - T. K. T. Nguyen
TI  - Abelian SACR-groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 27
EP  - 36
IS  - 63
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a2/
LA  - ru
ID  - VTGU_2020_63_a2
ER  - 
%0 Journal Article
%A T. K. T. Nguyen
%T Abelian SACR-groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 27-36
%N 63
%U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a2/
%G ru
%F VTGU_2020_63_a2
T. K. T. Nguyen. Abelian SACR-groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 27-36. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a2/

[1] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974; L. Fuchs, Infinite Abelian Groups, v. I, Academic Press, New York–London, 1970 ; v. II, 1973 | MR | Zbl

[2] S. Feigelstock, Additive Groups of Rings, v. I, Pitman Advanced Publishing Program, Boston–London, 1983 ; v. II, 1988 | MR | Zbl

[3] S. Feigelstock, “Additive groups of commutative rings”, J. Quaest. Math., 23 (2000), 241–245 | DOI | MR | Zbl

[4] R. Andruszkiewicz, M. Woronowicz, “On additive groups of associative and commutative rings”, J. Quaest. Math., 40:4 (2017), 527–537 | DOI | MR | Zbl

[5] E. I. Kompantseva, T. Q. T. Nguyen, “Algebraically compact abelian TI-groups”, Chebyshevskii sbornik, 20:1 (2019), 202–211 | DOI

[6] R. Baer, “Meta ideals”, Report Conf. Linear Algebras (June, 1956), Publ. National Acad. Sci. Nat. Res. Council, 1957, 502, 33–52 | MR

[7] G. Ehrlich, “Filial rings”, Portugal. Math., 42 (1983–1984), 185–194 | MR

[8] R. Andruszkiewicz, E. Puczylowski, “On filial rings”, Portugal. Math., 45:2 (1988), 139–149 | MR | Zbl

[9] M. Filipowicz, E. R. Puczylowski, “On filial and left filial rings”, Publ. Math. Debrecen, 66 (2005), 257–267 | MR | Zbl

[10] R. Andruszkiewicz, M. Woronowicz, “On TI-groups”, Recent Results in Pure and Applied Math. (Podlasie, 2014), 33–41 | MR

[11] T. Q.T. Nguyen, “Completely decomposable abelian TI-groups”, International scientific conference of students and young scientists “Lomonosov-2019” (Moscow, 8–12 April, 2019)

[12] R. Beaumont, R. Pierce, “Torsion free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl

[13] A. A. Fomin, W. Wickless, “Quotient divisible abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | MR | Zbl

[14] A. A. Fomin, “To quotient divisible group theory. I”, J. Math. Sci., 197:5 (2014), 688–697 | MR | Zbl

[15] A. A. Fomin, “To quotient divisible group theory. II”, J. Math. Sci., 230:3 (2018), 457–483 | MR | Zbl

[16] O. I. Davydova, “Rank-1 quotient divisible groups”, J. Math. Sci., 154:3 (2008), 295–300 | MR | Zbl

[17] E. V. Gordeeva, A. A. Fomin, “Completely decomposable homogeneous quotient divisible abelian groups”, Chebyshevskii sbornik, 19:2 (2018), 376–387 | DOI

[18] E. I. Kompantseva, “Torsion-free rings”, J. Math. Sci., 171:2 (2010), 213–247 | MR | Zbl

[19] A. E. Stratton, “The typeset of torsion-free rings of finite rank”, Comment Math. Unit. St., 27 (1979), 199–211 | MR | Zbl

[20] R. Beaumont, R. Wisner, “Ring with additive group which is a Torsion-free groups of rank two”, Acta Sci. Math., 20 (1959), 105–116 | MR | Zbl

[21] A. M. Aghdam, “On the strong nilstufe of rank two torsion-free groups”, Acta. Sci. Math. (Szeged), 49 (1985), 53–61 | MR | Zbl

[22] A. M. Aghdam, “Rings on indecomposable torsion free groups of rank two”, Int. Math. Forum 1, 3 (2006), 141–146 | MR

[23] A. M. Aghdam, A. Najafizadeh, “On torsion-free rings with indecomposable additive group of rank two”, Southeast Asian Bull. Math., 32 (2008), 199–208 | MR | Zbl