Mots-clés : SACR-group, TI-group.
@article{VTGU_2020_63_a2,
author = {T. K. T. Nguyen},
title = {Abelian {SACR-groups}},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {27--36},
year = {2020},
number = {63},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a2/}
}
T. K. T. Nguyen. Abelian SACR-groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 27-36. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a2/
[1] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974; L. Fuchs, Infinite Abelian Groups, v. I, Academic Press, New York–London, 1970 ; v. II, 1973 | MR | Zbl
[2] S. Feigelstock, Additive Groups of Rings, v. I, Pitman Advanced Publishing Program, Boston–London, 1983 ; v. II, 1988 | MR | Zbl
[3] S. Feigelstock, “Additive groups of commutative rings”, J. Quaest. Math., 23 (2000), 241–245 | DOI | MR | Zbl
[4] R. Andruszkiewicz, M. Woronowicz, “On additive groups of associative and commutative rings”, J. Quaest. Math., 40:4 (2017), 527–537 | DOI | MR | Zbl
[5] E. I. Kompantseva, T. Q. T. Nguyen, “Algebraically compact abelian TI-groups”, Chebyshevskii sbornik, 20:1 (2019), 202–211 | DOI
[6] R. Baer, “Meta ideals”, Report Conf. Linear Algebras (June, 1956), Publ. National Acad. Sci. Nat. Res. Council, 1957, 502, 33–52 | MR
[7] G. Ehrlich, “Filial rings”, Portugal. Math., 42 (1983–1984), 185–194 | MR
[8] R. Andruszkiewicz, E. Puczylowski, “On filial rings”, Portugal. Math., 45:2 (1988), 139–149 | MR | Zbl
[9] M. Filipowicz, E. R. Puczylowski, “On filial and left filial rings”, Publ. Math. Debrecen, 66 (2005), 257–267 | MR | Zbl
[10] R. Andruszkiewicz, M. Woronowicz, “On TI-groups”, Recent Results in Pure and Applied Math. (Podlasie, 2014), 33–41 | MR
[11] T. Q.T. Nguyen, “Completely decomposable abelian TI-groups”, International scientific conference of students and young scientists “Lomonosov-2019” (Moscow, 8–12 April, 2019)
[12] R. Beaumont, R. Pierce, “Torsion free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl
[13] A. A. Fomin, W. Wickless, “Quotient divisible abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | MR | Zbl
[14] A. A. Fomin, “To quotient divisible group theory. I”, J. Math. Sci., 197:5 (2014), 688–697 | MR | Zbl
[15] A. A. Fomin, “To quotient divisible group theory. II”, J. Math. Sci., 230:3 (2018), 457–483 | MR | Zbl
[16] O. I. Davydova, “Rank-1 quotient divisible groups”, J. Math. Sci., 154:3 (2008), 295–300 | MR | Zbl
[17] E. V. Gordeeva, A. A. Fomin, “Completely decomposable homogeneous quotient divisible abelian groups”, Chebyshevskii sbornik, 19:2 (2018), 376–387 | DOI
[18] E. I. Kompantseva, “Torsion-free rings”, J. Math. Sci., 171:2 (2010), 213–247 | MR | Zbl
[19] A. E. Stratton, “The typeset of torsion-free rings of finite rank”, Comment Math. Unit. St., 27 (1979), 199–211 | MR | Zbl
[20] R. Beaumont, R. Wisner, “Ring with additive group which is a Torsion-free groups of rank two”, Acta Sci. Math., 20 (1959), 105–116 | MR | Zbl
[21] A. M. Aghdam, “On the strong nilstufe of rank two torsion-free groups”, Acta. Sci. Math. (Szeged), 49 (1985), 53–61 | MR | Zbl
[22] A. M. Aghdam, “Rings on indecomposable torsion free groups of rank two”, Int. Math. Forum 1, 3 (2006), 141–146 | MR
[23] A. M. Aghdam, A. Najafizadeh, “On torsion-free rings with indecomposable additive group of rank two”, Southeast Asian Bull. Math., 32 (2008), 199–208 | MR | Zbl