Kinematics of a power-law fluid flow in a pipe with a varying cross section
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 125-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fluid transportation through channels with varying cross-section is widely spread in a number of technical applications. This circumstance determines constant interest of researchers to study such flows. This paper presents an investigation of the steady-state axisymmetric flow of an incompressible power-law fluid in a pipe of varying cross section with contraction followed by expansion. The mathematical formulation of the problem is developed using the equations in a cylindrical coordinate system in terms of vortex-stream function variables. Rheological behavior of the considered medium is described by the Ostwald-de Waele power-law model. To implement the numerical algorithm, a coordinate transformation is carried out. The problem is solved using the finite-difference method. An asymptotic time solution of the unsteady flow equation is applied to obtain steady-state fields of the vortex and stream function in the computational domain. To verify the developed numerical algorithm, an approximation convergence is examined on the sequence of square grids. The calculations of the flow of three rheological media (Newtonian, pseudoplastic, and dilatant) are carried out. A parametric study is performed to reveal the effect of the Reynolds number and power-law index on the flow structure. The shear stress distributions on the wall are demonstrated at various geometric parameters.
Keywords: pipe of varying cross section, contraction/expansion, power-law fluid, Ostwald-de Waele model, finite-difference method.
Mots-clés : coordinate transformation
@article{VTGU_2020_63_a10,
     author = {I. A. Ryltsev and K. E. Ryltseva and G. R. Shrager},
     title = {Kinematics of a power-law fluid flow in a pipe with a varying cross section},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {125--138},
     year = {2020},
     number = {63},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a10/}
}
TY  - JOUR
AU  - I. A. Ryltsev
AU  - K. E. Ryltseva
AU  - G. R. Shrager
TI  - Kinematics of a power-law fluid flow in a pipe with a varying cross section
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 125
EP  - 138
IS  - 63
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a10/
LA  - ru
ID  - VTGU_2020_63_a10
ER  - 
%0 Journal Article
%A I. A. Ryltsev
%A K. E. Ryltseva
%A G. R. Shrager
%T Kinematics of a power-law fluid flow in a pipe with a varying cross section
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 125-138
%N 63
%U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a10/
%G ru
%F VTGU_2020_63_a10
I. A. Ryltsev; K. E. Ryltseva; G. R. Shrager. Kinematics of a power-law fluid flow in a pipe with a varying cross section. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 125-138. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a10/

[1] J. S. Lee, Y. C. Fung, “Flow in locally constricted tubes at low Reynolds numbers”, Journal of Applied Mechanics, 37:1 (1970), 9–16 | DOI | Zbl

[2] D. F. Young, F. Y. Tsai, “Flow characteristics in model of arterial stenoses-I. Steady flow”, Journal of Biomechanics, 6:4 (1973), 395–402 | DOI

[3] T. S. Lee, “Numerical studies of fluid flow through tubes with double constrictions”, International Journal for Numerical Methods in Fluids, 11:8 (1990), 1113–1126 | DOI | Zbl

[4] T. S. Lee, “Steady laminar fluid flow through variable constrictions in vascular tubes”, Journal of Fluids Engineering, Transactions of the ASME, 116:1 (1994), 66–71 | DOI

[5] T. S. Lee, W. Liao, H. T. Low, “Numerical simulation of turbulent flow through series stenosis”, International Journal for Numerical Methods in Fluids, 42:7 (2003), 717–740 | DOI | MR | Zbl

[6] M. K. Banerjee, D. Nag, R. Ganguly, A. Datta, “Hemodynamics in stenosed arteries effects of stenosis shapes”, International Journal of Computational Methods, 7:3 (2010), 397–419 | DOI | MR

[7] D. K. Mandal, N. K. Manna, S. Chakraarti, “Influence of different bell-shaped stenosis on the progression of the disease atherosclerosis”, Journal of Mechanical Science and Technology, 25:8 (2011), 1933–1947 | DOI

[8] S. Sisavath, X. Jing, R. W. Zimmerman, “Creeping flow through a pipe of varying radius”, Physics of Fluids, 13:10 (2001), 2762–2772 | DOI

[9] D. Nag, A. Datta, “Steady laminar flow of blood through successive restrictions in circular conduits of small diameter”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222:8 (2008), 1557–1573 | DOI

[10] C. Tu, M. Deville, L. Dheur, L. Vanderschuren, “Finite element simulation of pulsatile flow through arterial stenosis”, Journal of Biomechanics, 25:10 (1992), 1141–1152 | DOI

[11] C. Tu, M. Deville, “Pulsatile flow of non-Newtonian fluids through arterial stenosis”, Journal of Biomechanics, 29:7 (1996), 899–908 | DOI

[12] S. Mukhopadhyay, M. S. Mandal, S. Mukhopadhyay, “Effects of variable viscosity on pulsatile flow of blood in a tapered stenotic flexible artery”, Mathematical Methods in the Applied Sciences, 42:2 (2019), 488–504 | DOI | MR | Zbl

[13] G. R. Zendehudi, M. S. Moayeri, “Comparison of physiological and simple pulsatile flows through stenosed arteries”, Journal of Biomechanics, 32:9 (1999), 959–695 | DOI

[14] R. Manimaran, “CFD simulation of non-Newtonian fluid flow in arterial stenoses with surface irregularities”, World Academy of Science, Engineering and Technology, 73 (2011), 957–962

[15] E. I. Borzenko, K. E. Ryltseva, G. R. Shrager, “Numerical investigation of non-Newtonian fluid flow through a pipe sudden contraction”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 58, 36–48 | DOI | MR

[16] P. J. Roache, Computational Fluid Dynamics, Albuquerque, Hermosa, 1982 | DOI | MR

[17] W. Ostwald, “Ueber die rechnerische Darstellung des Strukturgebietes der Viskositat”, Kolloid Zeitschrift, 47:2 (1929), 176–187 | DOI

[18] S. K. Godunov, V. S. Ryabenkiy, Difference Schemes, Elsevier Science Ltd, North-Holland, 1987 | MR | MR

[19] M. D. Deshpande, D. P. Giddens, R. F. Mabon, “Steady laminar flow through modelled vascular stenosis”, Journal of Biomechanics, 9:4 (1976), 165–174 | DOI