On the functor of probability measures and quantization dimensions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 15-26

Voir la notice de l'article provenant de la source Math-Net.Ru

The quantization dimensions of the probability measure given on the metric compact coincide with the dimensions of the finite approximation for the probability measure functor. Some functorial properties of quantization dimensions are established. It is shown that for any $b>0$ there exists a metric compact $X_b$ of capacitive dimension $\mathrm{dim}_{\mathrm{B}}X_b = b$ on which there are probability measures with support equal to $X$ whose quantization dimension takes all possible values from the interval $[0, b]$.
Mots-clés : quantization dimension
Keywords: functor of probability measures, Kantorovich–Rubinstein metric, dimension of finite approximation.
@article{VTGU_2020_63_a1,
     author = {A. V. Ivanov},
     title = {On the functor of probability measures and quantization dimensions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {15--26},
     publisher = {mathdoc},
     number = {63},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a1/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - On the functor of probability measures and quantization dimensions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 15
EP  - 26
IS  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a1/
LA  - ru
ID  - VTGU_2020_63_a1
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T On the functor of probability measures and quantization dimensions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 15-26
%N 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a1/
%G ru
%F VTGU_2020_63_a1
A. V. Ivanov. On the functor of probability measures and quantization dimensions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 15-26. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a1/