On the functor of probability measures and quantization dimensions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 15-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quantization dimensions of the probability measure given on the metric compact coincide with the dimensions of the finite approximation for the probability measure functor. Some functorial properties of quantization dimensions are established. It is shown that for any $b>0$ there exists a metric compact $X_b$ of capacitive dimension $\mathrm{dim}_{\mathrm{B}}X_b = b$ on which there are probability measures with support equal to $X$ whose quantization dimension takes all possible values from the interval $[0, b]$.
Mots-clés : quantization dimension
Keywords: functor of probability measures, Kantorovich–Rubinstein metric, dimension of finite approximation.
@article{VTGU_2020_63_a1,
     author = {A. V. Ivanov},
     title = {On the functor of probability measures and quantization dimensions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {15--26},
     year = {2020},
     number = {63},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a1/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - On the functor of probability measures and quantization dimensions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 15
EP  - 26
IS  - 63
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a1/
LA  - ru
ID  - VTGU_2020_63_a1
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T On the functor of probability measures and quantization dimensions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 15-26
%N 63
%U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a1/
%G ru
%F VTGU_2020_63_a1
A. V. Ivanov. On the functor of probability measures and quantization dimensions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 15-26. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a1/

[1] A. V. Ivanov, “On metric order of the spaces of the form F(X)”, Topology and its Applications, 221 (2017), 107–113 | DOI | MR | Zbl

[2] Ya. B. Pesin, Dimension theory in dynamical systems. Contemporary views and applications, The University of Chicago Press, 1997, 397 pp. | MR | MR

[3] A. V. Ivanov, O. V. Fomkina, “On the order of metric approximation of maximal linked systems and capacitarian dimensions”, Trans. of Karelian Research Centre of RAS, 2019, no. 7, 3–12 | DOI | Zbl

[4] S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions, Springer-Verlag, 2000, 231 pp. | MR | Zbl

[5] L. Pontryagin, L. Shnirelman, “On one metric property of dimension”, Annals of Mathematics, 33 (1932), 156–162 | MR | Zbl

[6] V. V. Fedorchuk, V. V. Filippov, General topology. Basic constructions, MSU Press, 1988, 252 pp.

[7] V. Fedorchuk, S. Todorcevic, “Cellularity of covariant functors”, Topology and its Applications, 76 (1997), 125–150 | MR | Zbl

[8] V. V. Fedorchuk, “Triples of infinite iterates of metrizable functors”, Math. USSR Izv., 36:2, 411–433 | MR

[9] L. V. Kantorovich, G. P. Akilov, Functional analysis, Nauka, M., 1977, 744 pp.