Restrictions on stress components in the vertices of regular triangular and quadrangular pyramids embedded in elastic body
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 119-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the framework of continuous model of deformable bodies, each point of the continuum is associated with an elementary volume. The concepts of continuum mechanics regarding material properties and state parameters (stresses, strains) are applicable to this volume. In the paper, this statement extends to singular points which are the vertices of triangular and quadrangular pyramids embedded in an elastic body. The restrictions on the stress components at the considered points are studied. It is shown that the number of restrictions determines a non-classical formulation of the problem of mechanics of a deformable body. The dependences for material constants of the bonded elements, which lead to an unlimited increase in the stresses in the vertices of triangular and quadrangular pyramids immersed in an elastic medium, are found to be the same. Moreover, these dependences coincide with those known for a circular cone and a spatial edge. The investigation results will find application in the mechanics of composite materials when studying the samples by indentation or interaction with prismatic cantilevers.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
internal singular point, non-classical problem, elementary volume.
Mots-clés : stress concentration
                    
                  
                
                
                Mots-clés : stress concentration
@article{VTGU_2019_62_a9,
     author = {V. M. Pestrenin and I. V. Pestrenina and L. V. Landik},
     title = {Restrictions on stress components in the vertices of regular triangular and quadrangular pyramids embedded in elastic body},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {119--134},
     publisher = {mathdoc},
     number = {62},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a9/}
}
                      
                      
                    TY - JOUR AU - V. M. Pestrenin AU - I. V. Pestrenina AU - L. V. Landik TI - Restrictions on stress components in the vertices of regular triangular and quadrangular pyramids embedded in elastic body JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 119 EP - 134 IS - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a9/ LA - ru ID - VTGU_2019_62_a9 ER -
%0 Journal Article %A V. M. Pestrenin %A I. V. Pestrenina %A L. V. Landik %T Restrictions on stress components in the vertices of regular triangular and quadrangular pyramids embedded in elastic body %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 119-134 %N 62 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a9/ %G ru %F VTGU_2019_62_a9
V. M. Pestrenin; I. V. Pestrenina; L. V. Landik. Restrictions on stress components in the vertices of regular triangular and quadrangular pyramids embedded in elastic body. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 119-134. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a9/
