Strength assessment for water shut-off baffles in a fractured medium
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 91-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes a mathematical model for estimating the strength of two-layered water shut-off baffle adjacent to a wellbore after pumping the cured synthetic resin into a fractured or fractured-porous water-saturated media. The mathematical model is based on the solution to the Lame problem of three-layered pipe, the solution to the problem of isotropic elastic half-space with a cavity, and the von Mises yield criterion for ideal-plastic body. For the outer layer of resinfractured rock barrier, the elastic moduli of equivalent homogeneous isotropic medium are calculated using the differential self-consistent method for needle-like inclusions. The proposed model allows one to account for both the stress relaxation in the rock to a hydrostatic stress state in geological times and the possible tectonic stresses in the rock. In a three-dimensional space of parameters “resin strength–Poisson's ratio for resin–bottomhole pressure after water shut-off in a well”, the strength and yield areas for inner and outer layers of two-layered water shut-off baffle are calculated using some fixed parameters. It is shown that in many cases involving the real elastic and strength properties of the cured synthetic resins, especially under stresses in the reservoir conditions, the water shut-off baffle will be destroyed in any production well operation. It is also proved that the water shut-off operation efficiency does not increase with an increase in the injected synthetic resin volume.
Keywords: water shut-off baffle, fractured-porous medium, differential self-consistent method, ideal plastic body.
@article{VTGU_2019_62_a7,
     author = {A. M. Il'yasov and T. F. Kireev and G. T. Bulgakova},
     title = {Strength assessment for water shut-off baffles in a fractured medium},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {91--104},
     year = {2019},
     number = {62},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a7/}
}
TY  - JOUR
AU  - A. M. Il'yasov
AU  - T. F. Kireev
AU  - G. T. Bulgakova
TI  - Strength assessment for water shut-off baffles in a fractured medium
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 91
EP  - 104
IS  - 62
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a7/
LA  - ru
ID  - VTGU_2019_62_a7
ER  - 
%0 Journal Article
%A A. M. Il'yasov
%A T. F. Kireev
%A G. T. Bulgakova
%T Strength assessment for water shut-off baffles in a fractured medium
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 91-104
%N 62
%U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a7/
%G ru
%F VTGU_2019_62_a7
A. M. Il'yasov; T. F. Kireev; G. T. Bulgakova. Strength assessment for water shut-off baffles in a fractured medium. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 91-104. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a7/

[1] A. P. Ershov, A. Ya. Dammer, A. L. Kupershtokh, ““Inviscid finger” instability in regular models of a porous medium”, Journal of Applied Mechanics and Technical Physics, 42 (2001), 300–309 | DOI

[2] S. G. Lekhnitskiy, Theory of elasticity of an anisotropic elastic body, Nauka, M., 1977

[3] A. N. Dinnik, “On rock pressure and calculation of the round shaft support”, Inzhenernyy rabotnik, 1925, no. 7, 1–12

[4] Yu. P. Zheltov, S. A. Khristianovich, “On hydraulic fracturing of oil reservoir”, Izvestiya AN SSSR. Otdelenie tekhicheskikh nauk, 1955, no. 5, 3–41

[5] K. S. Basniev, I. N. Kochina, V. M. Maksimov, Subsurface hydromechanics, Nedra, M., 1993

[6] F. I. Kotyakhov, Physics of gas and oil reservoirs, Nedra, M., 1977

[7] P. Malkowski, L. Ostrowski, “The methodology for the young modulus derivation for rocks and its value”, Proc. ISRM European Rock Mechanics Symposium EUROCK 2017 (20–22 June, Ostrava), Procedia Engineering, 191, 2017, 134–141 | DOI

[8] Yu. I. Dimitrienko, Nonlinear continuum mechanics, Fizmatlit, M., 2009

[9] K. B. Ustinov, “On determination of the effective elastic characteristics of two-phase media. The case of isolated inhomogeneities in the shape of rotational ellipsoids”, Uspekhi mekhaniki – Advances of Mechanics, 2003, no. 2, 126–168

[10] T. T. Wu, “The effect of inclusion shape on the elastic moduli of a two-phase material”, Int. J. Solids and Structures, 2 (1966), 1–8 | DOI

[11] A. M. Il'yasov, “Strength evaluation of a cement ring adjacent to a production well bore”, Journal of Applied Mechanics and Technical Physics, 58:1 (2017), 182–187 | DOI | DOI