Modeling of the dynamics of a liquid-droplet coolant under aerial firefighting
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 68-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of the evolution of liquid-droplet aerosol cloud during the coolant discharge from a helibucket into the seat of fire is presented. The analysis of the main stages of coolant discharge is carried out. In the process of gravitational deposition of droplet cloud, the following aspects are taken into account: the droplet fragmentation by the Rayleigh–Taylor and Kelvin–Helmholtz mechanisms; the evaporation in a temperature field of a convective column; and the effect of the wind on the trajectories of droplets. The temperature and velocity distributions along the convective column above the seat of fire are simulated using the Yu.A. Gostintsev model. The velocity of the droplets is calculated in accordance with a trajectory approach. The calculation of the droplet evaporation is carried out in the framework of diffusion model and reduced film model. The computational results on the characteristics of the cloud of droplets penetrating into the seat of fire under typical conditions of aerial firefighting with the use of helibucket are presented.
Keywords: aerial firefighting, liquid-droplet cloud, high-temperature environment, seat of fire, fragmentation and evaporation of droplets, mathematical modeling.
Mots-clés : gravitational deposition
@article{VTGU_2019_62_a5,
     author = {V. A. Arkhipov and O. V. Matvienko and I. K. Zharova and E. A. Maslov and K. G. Perfilieva and A. M. Bulavko},
     title = {Modeling of the dynamics of a liquid-droplet coolant under aerial firefighting},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {68--78},
     year = {2019},
     number = {62},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a5/}
}
TY  - JOUR
AU  - V. A. Arkhipov
AU  - O. V. Matvienko
AU  - I. K. Zharova
AU  - E. A. Maslov
AU  - K. G. Perfilieva
AU  - A. M. Bulavko
TI  - Modeling of the dynamics of a liquid-droplet coolant under aerial firefighting
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 68
EP  - 78
IS  - 62
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a5/
LA  - ru
ID  - VTGU_2019_62_a5
ER  - 
%0 Journal Article
%A V. A. Arkhipov
%A O. V. Matvienko
%A I. K. Zharova
%A E. A. Maslov
%A K. G. Perfilieva
%A A. M. Bulavko
%T Modeling of the dynamics of a liquid-droplet coolant under aerial firefighting
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 68-78
%N 62
%U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a5/
%G ru
%F VTGU_2019_62_a5
V. A. Arkhipov; O. V. Matvienko; I. K. Zharova; E. A. Maslov; K. G. Perfilieva; A. M. Bulavko. Modeling of the dynamics of a liquid-droplet coolant under aerial firefighting. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 68-78. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a5/

[1] V. P. Asovsky, “Peculiarities of forest firefighting by helicopters with spillway devices on the external sling”, Nauchnyy vestnik MGTU GA – Civil Aviation High Technologies, 2009, no. 138, 142–149

[2] N. P. Kopylov, V. N. Karpov, A. E. Kuznetsov, D. V. Fedotkin, I. R. Khasanov, E. Yu. Sushkina, “Peculiarities of the forest firefighting with the use of aircrafts”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 59, 79–86 | DOI

[3] M. A. Kudrov, “Dynamics of the fluid volume in the gas flow considering deformation, fragmentation and blowoff of drops”, Nauchnyy vestnik MGTU GA – Civil Aviation High Technologies, 2010, no. 151, 163–168

[4] E. E. Meshkov, V. O. Oreshkov, G. M. Yambaev, “Droplet cloud formation upon disintegration of free-falling water ball”, Pisma v zhurnal tekhnicheskoy fiziki – Technical Physics Letters, 37:15 (2011), 79–85 | DOI

[5] V. A. Arkhipov, I. K. Zharova, E. A. Kozlov, A. S. Tkachenko, “Prediction of ecological consequences of toxic aerosol clouds spreading in the fall areas of waste booster stages”, Optika atmosfery i okeana – Atmospheric and Oceanic Optics, 28:1 (2015), 89–93

[6] V. A. Arkhipov, E. A. Kozlov, S. S. Titov, A. S. Tkachenko, Usanina A.S, I. K. Zharova, “Evolution of a liquid-drop aerosol cloud in the atmosphere”, Arabian Journal of Geosciences, 2016, no. 9, 114 | DOI

[7] Yu. V. Alekhanov, M. V. Bliznetsov, Yu. A. Vlasov, S. I. Gerasimov, V. I. Dudin, A. E. Levushov, A. I. Logvinov, S. A. Lomtev, MarmyshevV. V., E. E. Meshkov, Yu. K. Semenov, S. V. Tsykin, “Method for studying the interaction of dispersed water with flame”, Fizika goreniya i vzryva Combustion, Explosion, and Shock Waves, 42:1 (2006), 57–64 | DOI

[8] R. S. Volkov, G. V. Kuznetsov, P. A. Strizhak, “Analysis of the effect exerted by the Initial temperature of atomized water on the integral characteristics of its evaporation during motion through the zone of “hot” gases”, J. Engineering Physics and Thermophysics, 87:2 (2014), 450–458 | DOI

[9] V. E. Nakoryakov, G. V. Kuznetsov, P. A. Strizhak, “Deformation of a water projectile during its free fall in air”, Doklady Akademii nauk – Doklady Physics, 467:5 (2016), 537–542 | DOI

[10] V. E. Nakoryakov, G. V. Kuznetsov, P. A. Strizhak, “Limited transverse sizes of a droplet cloud under disintegration of a water mass during its fall from a great height”, Doklady Akademii nauk – Doklady Physics, 475:2 (2017), 145–149 | DOI

[11] V. A. Arkhipov, S. A. Basalaev, A. N. Bulavko, N. N. Zolotorev, K. G. Perfilieva, S. N. Polenchuk, Facility for studying the dynamics of the destruction of a spherical liquid macrovolume during its free fall in air, RF Patent 2705965, 2019

[12] R. I. Nigmatulin, Dynamics of multiphase media, Nauka, M., 1991

[13] V. A. Arkhipov, O. V. Matvienko, V. F. Trofimov, “Combustion of sprayed liquid fuel in a swirling flow”, Fizika goreniya i vzryva – Combustion, Explosion, and Shock Waves, 41:2 (2005), 26–37 | DOI

[14] A. S. Tkachenko, E. A. Maslov, A. S. Usanina, S. E. Orlov, Computational program for liquid-droplet aerosol cloud, Certificate of state registration of computer programs 2016610567, 2016

[15] M. E. Berland, Modern problems of atmospheric diffusion and pollution, Gidrometeoizdat, L., 1975

[16] N. L. Byzova, E. K. Garger, V. N. Ivanov, Experimental studies of atmospheric diffusion and calculations of impurity scattering, Gidrometeoizdat, L., 1991

[17] M. E. Berland, Prediction and regulation of atmospheric pollution, Gidrometeoizdat, L., 1985

[18] B. Gebkhart, Y. Dzhayluriya, R. Makhadzhan, B. Sammakiya, Free-convection currents, heat and mass transfer, v. 1, Mir, M., 1991

[19] A. M. Grishin, Mathematical modeling of forest fires and new methods of fighting them, Publishing House of the Tomsk State University, Tomsk, 1997, 390 pp.