@article{VTGU_2019_62_a4,
author = {T. G. Ergashev and N. M. Safarbayeva},
title = {Dirichlet problem for the multudimensional {Helmholtz} equation with one singular coefficient},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {55--67},
year = {2019},
number = {62},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/}
}
TY - JOUR AU - T. G. Ergashev AU - N. M. Safarbayeva TI - Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 55 EP - 67 IS - 62 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/ LA - ru ID - VTGU_2019_62_a4 ER -
%0 Journal Article %A T. G. Ergashev %A N. M. Safarbayeva %T Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 55-67 %N 62 %U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/ %G ru %F VTGU_2019_62_a4
T. G. Ergashev; N. M. Safarbayeva. Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 55-67. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/
[1] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, New York–London, 1958
[2] F. I. Frankl, Selected Works on Gas Dynamics, Nauka, M., 1973
[3] M. M. Smirnov, Degenerate elliptic and hyperbolic equations, Nauka, M., 1966
[4] R. P. Gilbert, Function Theoretic Methods in Partial Differential Equations, Academic Press, New York–London, 1969
[5] A. V. Bitsadze, Some classes of partial differential equations, Nauka, M., 1981
[6] A. Hasanov, Int. J. Applied Mathematics and Statistics, 13:8 (2008), 41–49
[7] A. Hasanov, Complex Variables and Elliptic Equations, 52:8 (2007), 673–683 | DOI
[8] A. K. Urinov, E. T. Karimov, “On fundamental solutions for 3D singular elliptic equations with a parameter”, Applied Mathematical Letters, 24 (2011), 314–319 | DOI
[9] M. S. Salakhitdinov, A. Hasanov, “A solution of the Neumann-Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 53:4 (2008), 355–364 | DOI
[10] M. S. Salakhitdinov, A. Hasanov, “The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation”, Eurasian Mathematical Journal, 3:4 (2012), 99–110
[11] Salakhitdinov M. S., Hasanov A., “The boundary problem $ND_1$ for the generalized axially symmetric Helmholtz equation”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk – Reports of International Academy of Sciences of Adygey, 13:1 (2011), 109–116
[12] M. E. Lerner, O. F. Repin, “Nonlocal boundary value problems in a vertical half-strip for a generalized axisymmetric Helmholtz equation”, Differential equations, 37:11 (2001), 1640–1642
[13] O. F. Repin, M. E. Lerner, “On the Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation in the first quadrant”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya fizikomatematicheskiye nauki – Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 1998, no. 6, 5–8 | DOI
[14] T. G. Ergashev, “Generalized solutions of the degenerate hyperbolic equation of the second kind with a spectral parameter”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 46, 41–49 | DOI
[15] T. G. Ergashev, “The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 50, 45–56 | DOI
[16] R. M. Mavlyaviev, I. B. Garipov, “Fundamental solutions of multidimensional axisymmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 62:3 (2017), 284–296 | DOI
[17] T. G. Ergashev, A. Hasanov, “Fundamental solutions of the bi-axially symmetric Helmholtz equation”, Uzbek Mathematical Journal, 2018, no. 1, 55–64
[18] T. G. Ergashev, “On fundamental solutions for multidimensional Helmholtz equation with three singular coefficients”, Computers and Mathematics with Applications, 77 (2019), 69–76 | DOI
[19] A. K. Urinov, T. G. Ergashev, “Confluent hypergeometric functions of many variables and their application to finding fundamental solutions of the generalized Helmholtz equation with singular coefficients”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 55, 45–56 | DOI
[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. 1, McGraw-Hill Book Company, New York–Toronto–London, 1953
[21] S. M. Sitnik, E. L. Shishkina, Method of transformation operators for differential equations with Bessel operators, Fizmatlit, M., 2019
[22] C. Agostinelli, “Integrazione dell'equazione differenziale $u_{xx} +u_{yy} +u_{zz} +x^{-1}ux =f$ e problema analogo a quello di Dirichlet per un campo emisferico”, Atti della Accademia Nazionale dei Lincei, 6(26) (1937), 7–8
[23] M. N. Olevskii, “Solution of the Dirichlet problem regarding to the equation $\Delta u+px_n^{-1}u_{x_n}=\rho$ for a hemispherical domain”, Doklady Akademii Nauk SSSR – Reports of the Sciences Academy of USSR, 64:6 (1949), 767–770
[24] I. T. Nazipov, “Solution of the spatial Tricomi problem for a singular mixed-type equation by the method of integral equations”, Russian Mathematics, 55:3 (2011), 61–76 | DOI
[25] M. S. Salakhiddinov, A. Hasanov, “On the theory of the multidimensional Gellerstedt equation”, Uzbekskiy matematicheskiy zhurnal – Uzbek Mathematical Journal, 2007, no. 3, 95–109