Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 55-67
Voir la notice de l'article provenant de la source Math-Net.Ru
In the study of boundary value problems for elliptic equations with singular coefficients, fundamental solutions play an important role, which is expressed by hypergeometric functions of one, two, or more variables depending on the number of the singularity. An interesting case is the Helmholtz equation with one or two singularities, and many authors solved various boundary value problems for a two-dimensional Helmholtz equation. However, relatively few works are devoted to the study of an equation with one singular coefficient, when the dimension of the equation exceeds three. The main obstacle in this direction is the lack of explicit fundamental solutions for the multidimensional Helmholtz equation with at least one singular coefficient. Fundamental solutions for the multidimensional Helmholtz equation with one singular coefficient in the half-space were found recently. In this paper, the Dirichlet problem for the abovementioned elliptic equation in a finite simply connected domain is studied. Using the properties of one of the fundamental solutions, the Green function was constructed. With the help of the function, the solution of the problem in a finite region bounded by the multidimensional hemisphere is found in an explicit form.
Keywords:
multidimensional Helmholtz equation with one singular coefficient, Dirichlet problem, fundamental solution, Gauss–Ostrogradsky formula, Green function.
@article{VTGU_2019_62_a4,
author = {T. G. Ergashev and N. M. Safarbayeva},
title = {Dirichlet problem for the multudimensional {Helmholtz} equation with one singular coefficient},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {55--67},
publisher = {mathdoc},
number = {62},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/}
}
TY - JOUR AU - T. G. Ergashev AU - N. M. Safarbayeva TI - Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 55 EP - 67 IS - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/ LA - ru ID - VTGU_2019_62_a4 ER -
%0 Journal Article %A T. G. Ergashev %A N. M. Safarbayeva %T Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 55-67 %N 62 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/ %G ru %F VTGU_2019_62_a4
T. G. Ergashev; N. M. Safarbayeva. Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 55-67. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/