Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 55-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the study of boundary value problems for elliptic equations with singular coefficients, fundamental solutions play an important role, which is expressed by hypergeometric functions of one, two, or more variables depending on the number of the singularity. An interesting case is the Helmholtz equation with one or two singularities, and many authors solved various boundary value problems for a two-dimensional Helmholtz equation. However, relatively few works are devoted to the study of an equation with one singular coefficient, when the dimension of the equation exceeds three. The main obstacle in this direction is the lack of explicit fundamental solutions for the multidimensional Helmholtz equation with at least one singular coefficient. Fundamental solutions for the multidimensional Helmholtz equation with one singular coefficient in the half-space were found recently. In this paper, the Dirichlet problem for the abovementioned elliptic equation in a finite simply connected domain is studied. Using the properties of one of the fundamental solutions, the Green function was constructed. With the help of the function, the solution of the problem in a finite region bounded by the multidimensional hemisphere is found in an explicit form.
Keywords: multidimensional Helmholtz equation with one singular coefficient, Dirichlet problem, fundamental solution, Gauss–Ostrogradsky formula, Green function.
@article{VTGU_2019_62_a4,
     author = {T. G. Ergashev and N. M. Safarbayeva},
     title = {Dirichlet problem for the multudimensional {Helmholtz} equation with one singular coefficient},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {55--67},
     year = {2019},
     number = {62},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/}
}
TY  - JOUR
AU  - T. G. Ergashev
AU  - N. M. Safarbayeva
TI  - Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 55
EP  - 67
IS  - 62
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/
LA  - ru
ID  - VTGU_2019_62_a4
ER  - 
%0 Journal Article
%A T. G. Ergashev
%A N. M. Safarbayeva
%T Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 55-67
%N 62
%U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/
%G ru
%F VTGU_2019_62_a4
T. G. Ergashev; N. M. Safarbayeva. Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 55-67. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a4/

[1] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, New York–London, 1958

[2] F. I. Frankl, Selected Works on Gas Dynamics, Nauka, M., 1973

[3] M. M. Smirnov, Degenerate elliptic and hyperbolic equations, Nauka, M., 1966

[4] R. P. Gilbert, Function Theoretic Methods in Partial Differential Equations, Academic Press, New York–London, 1969

[5] A. V. Bitsadze, Some classes of partial differential equations, Nauka, M., 1981

[6] A. Hasanov, Int. J. Applied Mathematics and Statistics, 13:8 (2008), 41–49

[7] A. Hasanov, Complex Variables and Elliptic Equations, 52:8 (2007), 673–683 | DOI

[8] A. K. Urinov, E. T. Karimov, “On fundamental solutions for 3D singular elliptic equations with a parameter”, Applied Mathematical Letters, 24 (2011), 314–319 | DOI

[9] M. S. Salakhitdinov, A. Hasanov, “A solution of the Neumann-Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 53:4 (2008), 355–364 | DOI

[10] M. S. Salakhitdinov, A. Hasanov, “The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation”, Eurasian Mathematical Journal, 3:4 (2012), 99–110

[11] Salakhitdinov M. S., Hasanov A., “The boundary problem $ND_1$ for the generalized axially symmetric Helmholtz equation”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk – Reports of International Academy of Sciences of Adygey, 13:1 (2011), 109–116

[12] M. E. Lerner, O. F. Repin, “Nonlocal boundary value problems in a vertical half-strip for a generalized axisymmetric Helmholtz equation”, Differential equations, 37:11 (2001), 1640–1642

[13] O. F. Repin, M. E. Lerner, “On the Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation in the first quadrant”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya fizikomatematicheskiye nauki – Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 1998, no. 6, 5–8 | DOI

[14] T. G. Ergashev, “Generalized solutions of the degenerate hyperbolic equation of the second kind with a spectral parameter”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 46, 41–49 | DOI

[15] T. G. Ergashev, “The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 50, 45–56 | DOI

[16] R. M. Mavlyaviev, I. B. Garipov, “Fundamental solutions of multidimensional axisymmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 62:3 (2017), 284–296 | DOI

[17] T. G. Ergashev, A. Hasanov, “Fundamental solutions of the bi-axially symmetric Helmholtz equation”, Uzbek Mathematical Journal, 2018, no. 1, 55–64

[18] T. G. Ergashev, “On fundamental solutions for multidimensional Helmholtz equation with three singular coefficients”, Computers and Mathematics with Applications, 77 (2019), 69–76 | DOI

[19] A. K. Urinov, T. G. Ergashev, “Confluent hypergeometric functions of many variables and their application to finding fundamental solutions of the generalized Helmholtz equation with singular coefficients”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 55, 45–56 | DOI

[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. 1, McGraw-Hill Book Company, New York–Toronto–London, 1953

[21] S. M. Sitnik, E. L. Shishkina, Method of transformation operators for differential equations with Bessel operators, Fizmatlit, M., 2019

[22] C. Agostinelli, “Integrazione dell'equazione differenziale $u_{xx} +u_{yy} +u_{zz} +x^{-1}ux =f$ e problema analogo a quello di Dirichlet per un campo emisferico”, Atti della Accademia Nazionale dei Lincei, 6(26) (1937), 7–8

[23] M. N. Olevskii, “Solution of the Dirichlet problem regarding to the equation $\Delta u+px_n^{-1}u_{x_n}=\rho$ for a hemispherical domain”, Doklady Akademii Nauk SSSR – Reports of the Sciences Academy of USSR, 64:6 (1949), 767–770

[24] I. T. Nazipov, “Solution of the spatial Tricomi problem for a singular mixed-type equation by the method of integral equations”, Russian Mathematics, 55:3 (2011), 61–76 | DOI

[25] M. S. Salakhiddinov, A. Hasanov, “On the theory of the multidimensional Gellerstedt equation”, Uzbekskiy matematicheskiy zhurnal – Uzbek Mathematical Journal, 2007, no. 3, 95–109