On the derivative of the double-layer logarithmic potential
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 38-54
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A formula is given for calculating the derivative of the logarithmic potential of a double layer and some basic properties of the operator generated by the derivative of the logarithmic potential of a double layer in generalized Hölder spaces are studied.
Mots-clés : Laplace equations
Keywords: Lyapunov curve, derivative of the double-layer logarithmic potential, curvilinear singular integral, generalized Hölder spaces.
@article{VTGU_2019_62_a3,
     author = {E. H. Khalilov and M. N. Bakhshaliyeva},
     title = {On the derivative of the double-layer logarithmic potential},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {38--54},
     year = {2019},
     number = {62},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a3/}
}
TY  - JOUR
AU  - E. H. Khalilov
AU  - M. N. Bakhshaliyeva
TI  - On the derivative of the double-layer logarithmic potential
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 38
EP  - 54
IS  - 62
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a3/
LA  - ru
ID  - VTGU_2019_62_a3
ER  - 
%0 Journal Article
%A E. H. Khalilov
%A M. N. Bakhshaliyeva
%T On the derivative of the double-layer logarithmic potential
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 38-54
%N 62
%U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a3/
%G ru
%F VTGU_2019_62_a3
E. H. Khalilov; M. N. Bakhshaliyeva. On the derivative of the double-layer logarithmic potential. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 38-54. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a3/

[1] D. L. Colton, R. Kress, Integral equation methods in scattering theory, John Wiley Sons, 1983, 271 pp.

[2] N. M. Gyunter, Potential theory and its applications to basic problems of mathematical physics, F. Ungar Publ. Co, 1967, 338 pp.

[3] E. H. Khalilov, “Properties of the operator generated by the derivative of the acoustic single layer potential”, Journal of Mathematical Sciences, 231:2 (2018), 168–180

[4] E. H. Khalilov, “Some properties of the operators generated by a derivative of the acoustic double layer potential”, Siberian Mathematical Journal, 55:3 (2014), 564–573 | DOI

[5] E. H. Khalilov, “Cubic formula for the normal derivative of a double layer acoustic potential”, Transactions of NAS of Azerbaijan, series of physical-technical and mathematical sciences, 34:1 (2014), 73–82

[6] E. H. Khalilov, “On an approximate solution of a class of boundary integral equations of the first kind”, Differential equations, 52:9 (2016), 1234–1240 | DOI

[7] E. H. Khalilov, “Constructive method for solving a boundary value problem with impedance boundary condition for the Helmholtz equation”, Differential Equations, 54:4 (2018), 539–550 | DOI

[8] E. H. Khalilov, A. R. Aliev, “Justification of a quadrature method for an integral equation to the external Neumann problem for the Helmholtz equation”, Mathematical Methods in the Applied Sciences, 41:16 (2018), 6921–6933 | DOI

[9] V. S. Vladimirov, Equations of mathematical physics, Marcel Dekker publ., New York, 1971, 426 pp.

[10] Yu. A. Kustov, B. I. Musaev, The cubature formula for a two-dimensional singular integral and their applications, Submitted to VINITI No 4281-81, 1981, 60 pp.

[11] A. I. Guseinov, Kh. Sh. Mukhtarov, Introduction to the Theory of Nonlinear Singular Integral Equations, Nauka publ., M., 1980, 416 pp.