Left-invariant para-sasakian structures on Lie groups
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 27-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Paracontact structures on manifolds are currently being studied quite actively; there are
several different approaches to the definition of the concepts of paracontact and para-Sasakian
structures. In this paper, the paracontact structure on a contact manifold $(M^{2n+1},\eta)$ is determined
by an affinor $\varphi$ which has the property $\varphi^2=I-\eta\otimes\xi$, where $\xi$ is the Reeb field and $I$ is the identity
automorphism. In addition, it is assumed that $d\eta(\varphi X,\varphi Y)=-d\eta(X,Y)$. This allows us to define a
pseudo-Riemannian metric by the equality $g(X,Y) = d\eta(\varphi X,Y) + \eta(X)\eta(Y)$. In this paper, Sasaki
paracontact structures are determined in the same way as conventional Sasaki structures in the
case of contact structures. A paracontact metric structure $(\eta, \xi, \varphi, g)$ on $M^{2n+1}$ is called para-Sasakian if the almost para-complex structure $J$ on $M^{2n+1}\times\mathbf{R}$ defined by the formula $J(X,
f\partial_t) = (\varphi X - f\xi, -\eta(X)\partial_t)$, is integrable. In this paper, we obtain tensors whose vanishing means that
the manifold is para-Sasakian. In the case of Lie groups, it is shown that left-invariant para-Sasakian structures can be obtained as central extensions of para-Kähler Lie groups. In this case,
the relations between the curvature of the para-Kähler Lie group and the curvature of the
corresponding para-Sasakian Lie group are found.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
para-complex structures, para-Kähler structures, left-invariant paracontact structures.
Keywords: para-Sasakian structures, para-Sasakian manifold
                    
                  
                
                
                Keywords: para-Sasakian structures, para-Sasakian manifold
@article{VTGU_2019_62_a2,
     author = {N. K. Smolentsev},
     title = {Left-invariant para-sasakian structures on {Lie} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {27--37},
     publisher = {mathdoc},
     number = {62},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a2/}
}
                      
                      
                    TY - JOUR AU - N. K. Smolentsev TI - Left-invariant para-sasakian structures on Lie groups JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 27 EP - 37 IS - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a2/ LA - ru ID - VTGU_2019_62_a2 ER -
N. K. Smolentsev. Left-invariant para-sasakian structures on Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 27-37. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a2/
