Left-invariant para-sasakian structures on Lie groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 27-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Paracontact structures on manifolds are currently being studied quite actively; there are several different approaches to the definition of the concepts of paracontact and para-Sasakian structures. In this paper, the paracontact structure on a contact manifold $(M^{2n+1},\eta)$ is determined by an affinor $\varphi$ which has the property $\varphi^2=I-\eta\otimes\xi$, where $\xi$ is the Reeb field and $I$ is the identity automorphism. In addition, it is assumed that $d\eta(\varphi X,\varphi Y)=-d\eta(X,Y)$. This allows us to define a pseudo-Riemannian metric by the equality $g(X,Y) = d\eta(\varphi X,Y) + \eta(X)\eta(Y)$. In this paper, Sasaki paracontact structures are determined in the same way as conventional Sasaki structures in the case of contact structures. A paracontact metric structure $(\eta, \xi, \varphi, g)$ on $M^{2n+1}$ is called para-Sasakian if the almost para-complex structure $J$ on $M^{2n+1}\times\mathbf{R}$ defined by the formula $J(X, f\partial_t) = (\varphi X - f\xi, -\eta(X)\partial_t)$, is integrable. In this paper, we obtain tensors whose vanishing means that the manifold is para-Sasakian. In the case of Lie groups, it is shown that left-invariant para-Sasakian structures can be obtained as central extensions of para-Kähler Lie groups. In this case, the relations between the curvature of the para-Kähler Lie group and the curvature of the corresponding para-Sasakian Lie group are found.
Mots-clés : para-complex structures, para-Kähler structures, left-invariant paracontact structures.
Keywords: para-Sasakian structures, para-Sasakian manifold
@article{VTGU_2019_62_a2,
     author = {N. K. Smolentsev},
     title = {Left-invariant para-sasakian structures on {Lie} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {27--37},
     year = {2019},
     number = {62},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a2/}
}
TY  - JOUR
AU  - N. K. Smolentsev
TI  - Left-invariant para-sasakian structures on Lie groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 27
EP  - 37
IS  - 62
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a2/
LA  - ru
ID  - VTGU_2019_62_a2
ER  - 
%0 Journal Article
%A N. K. Smolentsev
%T Left-invariant para-sasakian structures on Lie groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 27-37
%N 62
%U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a2/
%G ru
%F VTGU_2019_62_a2
N. K. Smolentsev. Left-invariant para-sasakian structures on Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 27-37. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a2/

[1] C. L. Bejan, S. Eken, E. K{\i}lıç, “Legendre Curves on Generalized Paracontact Metric Manifolds”, Bull. Malays. Math. Sci. Soc., 42 (2019), 185–199 | DOI

[2] D. G. Prakasha, P. Veeresha, “Para-Sasakian manifolds and *-Ricci solitons”, Afrika Matematika, 30:7–8, 989–998 | DOI

[3] U. C. De, Y. Han, K. Mandal, “On Para-Sasakian Manifolds Satisfying Certain Curvature Conditions”, Filomat, 31:7 (2017), 1941–1947 | DOI

[4] D. V. Alekseevsky, V. Cortes, A. Galaev, T. Leistner, “Cones over pseudo-Riemannian manifolds and their holonomy”, J. Reine Angew. Math., 635 (2009), 23–69 | DOI

[5] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin–Heidelberg–New York, 1976

[6] D. V. Alekseevsky, C. Medori, A. Tomassini, “Homogeneous para-Kähler Einstein manifolds”, Russ. Math. Surv., 64:1 (2009), 1–43 | DOI

[7] N. K. Smolentsev, Left-invariant almost para-complex structures on six-dimensional nilpotent Lie groups, Cornell University Library, 15 pp., arXiv: 1801.0799lv2 [math.DG]

[8] A. Diatta, “Left invariant contact structures on Lie groups”, Diff. Geom. and its Appl., 26:5 (2008), 544–552 | DOI

[9] M. Goze, Y. Khakimdjanov, A. Medina, “Symplectic or contact structures on Lie groups”, Differential Geom. Appl., 21:1 (2004), 41–54 | DOI

[10] N. K. Smolentsev, “Invariant pseudo-Sasakian and K-contact structures on seven-dimensional nilpotent Lie groups”, Science Evolution, 2:1 (2017), 91–99

[11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 1, 2, Interscience Publ., New York–London, 1963