Numerical study of the aerodynamic characteristics of a “wing–fuselage–engine nacelle–pylon” three-dimensional layout of the engine for a wide-body long-range aircraft
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 135-141
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents the numerical calculation results on the aerodynamic characteristics of a “wing–fuselage–engine nacelle–pylon” full three-dimensional layout for a wide-body long-range aircraft engine of optimal shape in a wide range of flight conditions. Aerodynamic analysis of the initial configuration is carried out using the OPTIMENGA_AERO_ANALYSIS software which is a computer system applied for a high-precision calculation of viscous flows near aerodynamic bodies of complex configuration. According to the analysis of numerical calculation results, the “wing–fuselage–engine nacelle–pylon of the engine” configuration for a wide-body long-range aircraft of optimal shape exposes significantly better aerodynamic characteristics compared to the baseline design in a wide range of Mach number and lift coefficient.
Keywords: wide-body long-range aircraft, the full Navier–Stokes equations, pitch moment, lift coefficient.
Mots-clés : drag coefficient
@article{VTGU_2019_62_a10,
     author = {S. V. Timchenko},
     title = {Numerical study of the aerodynamic characteristics of a {\textquotedblleft}wing{\textendash}fuselage{\textendash}engine nacelle{\textendash}pylon{\textquotedblright} three-dimensional layout of the engine for a wide-body long-range aircraft},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {135--141},
     year = {2019},
     number = {62},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a10/}
}
TY  - JOUR
AU  - S. V. Timchenko
TI  - Numerical study of the aerodynamic characteristics of a “wing–fuselage–engine nacelle–pylon” three-dimensional layout of the engine for a wide-body long-range aircraft
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 135
EP  - 141
IS  - 62
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a10/
LA  - ru
ID  - VTGU_2019_62_a10
ER  - 
%0 Journal Article
%A S. V. Timchenko
%T Numerical study of the aerodynamic characteristics of a “wing–fuselage–engine nacelle–pylon” three-dimensional layout of the engine for a wide-body long-range aircraft
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 135-141
%N 62
%U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a10/
%G ru
%F VTGU_2019_62_a10
S. V. Timchenko. Numerical study of the aerodynamic characteristics of a “wing–fuselage–engine nacelle–pylon” three-dimensional layout of the engine for a wide-body long-range aircraft. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 135-141. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a10/

[1] S. V. Peygin, N. A. Pushchin, A. L. Bolsunovskiy, S. V. Timchenko, “An optimal aerodynamic design for the wing of a wide-body long-range aircraft”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 51 (2018), 117–129 | DOI

[2] B. Epstein, S. Peigin, A. Bolsunovskiy, S. V. Timchenko, “Aerodynamic shape optimization by automatic hybrid genetic tool OPTIMENGA AERO”, Source of the Document 52nd AIAA Aerospace Sciences Meeting AIAA Science and Technology Forum and Exposition, SciTech 2014 | DOI

[3] K. A. Stepanov, S. V. Timchenko, “Investigation of the stability of an unmanned aerial vehicle wing optimizing in terms of its initial shape”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 56 (2018), 120–127 | DOI

[4] B. Epstein, J. Jameson, S. Peigin, D. Roman, N. Harrison, J. Vassberg, “Comparative study of 3D wing drag minimization by different optimization techniques”, Journal of Aircraft, 46:2 (2009), 526–541 | DOI

[5] A. Harten, S. Osher, “Uniformly high-order accurate non-oscillatory schemes, I”, SIAM Journal of Numerical Analysis, 24:2 (1987), 279–309 | DOI

[6] C. W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes 1”, J. Computational Physics, 83:1 (1989), 3 | DOI

[7] B. Epstein, A. Averbuch, I. Yavneh, “An accurate ENO driven multigrid method applied to 3D turbulent transonic flows”, Journal of Computational Physics, 168:2 (2001), 316–338 | DOI