Involutions of the general linear group $GL_2$ over a subring of the field $\mathbb{Q}$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 19-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The necessary and sufficient conditions for the conjugacy of involutions of the group $GL_2$ over an arbitrary subring of the field $\mathbb{Q}$ are obtained. It is shown that if this subring is (not) $2$-divisible, then the number of classes of conjugate off-center involutions is $1$ (respectively $2$).
Mots-clés : matrix
Keywords: general linear group, conjugate involutions, inner automorphism.
@article{VTGU_2019_62_a1,
     author = {V. A. Gaidak and E. A. Timoshenko},
     title = {Involutions of the general linear group $GL_2$ over a subring of the field~$\mathbb{Q}$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {19--26},
     year = {2019},
     number = {62},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a1/}
}
TY  - JOUR
AU  - V. A. Gaidak
AU  - E. A. Timoshenko
TI  - Involutions of the general linear group $GL_2$ over a subring of the field $\mathbb{Q}$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 19
EP  - 26
IS  - 62
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a1/
LA  - ru
ID  - VTGU_2019_62_a1
ER  - 
%0 Journal Article
%A V. A. Gaidak
%A E. A. Timoshenko
%T Involutions of the general linear group $GL_2$ over a subring of the field $\mathbb{Q}$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 19-26
%N 62
%U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a1/
%G ru
%F VTGU_2019_62_a1
V. A. Gaidak; E. A. Timoshenko. Involutions of the general linear group $GL_2$ over a subring of the field $\mathbb{Q}$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 19-26. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a1/

[1] A. M. Sebeldin, “Isomorphism conditions for completely decomposable torsion-free Abelian groups with isomorphic rings of endomorphisms”, Math. Notes. Acad. Sci. USSR, 11:4 (1972), 248–250 | DOI

[2] V. K. Vildanov, “Determinability of a completely decomposable torsionfree rank 2 Abelian group by its automorphism group”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo – Vestnik of Lobachevsky State University of Nizhni Novgorod, 2011, no. 3(1), 174–177

[3] V. K. Vildanov, “Determinability of a completely decomposable block-rigid torsion-free Abelian group by its automorphism group”, J. Math. Sci. (New York), 197:5 (2014), 590594 | DOI

[4] V. K. Vildanov, “On determinability of a completely decomposable torsion-free Abelian group by its automorphism group”, J. Math. Sci. (New York), 230:3 (2018), 372–376 | DOI

[5] P. M. Cohn, “On the structure of the $GL_2$ of a ring”, Publ. Math. Inst. Hautes Etudes Sci., 30 (1966), 5–53 | DOI

[6] M. N. Zonov, E. A. Timoshenko, “On the standard form for matrices of order two”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 59 (2019), 5–10 | DOI