@article{VTGU_2019_61_a8,
author = {B. A. Khudayarov and K. M. Komilova},
title = {Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {95--110},
year = {2019},
number = {61},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_61_a8/}
}
TY - JOUR AU - B. A. Khudayarov AU - K. M. Komilova TI - Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 95 EP - 110 IS - 61 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_61_a8/ LA - ru ID - VTGU_2019_61_a8 ER -
%0 Journal Article %A B. A. Khudayarov %A K. M. Komilova %T Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 95-110 %N 61 %U http://geodesic.mathdoc.fr/item/VTGU_2019_61_a8/ %G ru %F VTGU_2019_61_a8
B. A. Khudayarov; K. M. Komilova. Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 61 (2019), pp. 95-110. http://geodesic.mathdoc.fr/item/VTGU_2019_61_a8/
[1] Xiao-Ye Mao, H Ding, Li-Qun Chen, “Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime”, Nonlinear Dynamics, 86:2 (2016), 795–80 | DOI | MR
[2] M. P. Paidoussis, G. X. Li, “Pipes conveying fluid: a model dynamical problem”, J. Fluid. Struct, 7 (1993), 137–204 | DOI
[3] S. A. Bezborodov, A. M. Ulanov, “Calculation of vibration of pipeline bundle with damping support made of MR material”, Procedia Engineering, 176 (2017), 169–174 | DOI
[4] Kaiming Bi, Hong Hao, “Numerical simulation on the effectiveness of using viscoelastic materials to mitigate seismic induced vibrations of above-ground pipelines”, Engineering Structures, 123 (2016), 1–14 | DOI
[5] Hu Ding, Jinchen Ji, Li-Qun Chen, “Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics”, Mechanical Systems and Signal Processing, 121 (2019), 675–688 | DOI
[6] B. A. Khudayarov, F. Zh. Turaev, “Mathematical Simulation of nonlinear oscillations of viscoelastic pipelines conveying fluid”, Applied Mathematical Modelling, 66 (2019), 662–679 | DOI | MR
[7] Zahid I. Al-Hashimy, Hussain H. Al-Kayiem, Rune W. Time, “Experimental investigation on the vibration induced by slug flow in horizontal pipe”, ARPN Journal of Engineering and Applied Sciences, 11:20 (2016), 12134–12139
[8] M. Ya. Belen'kij, M. A. Gotovskij, B. S. Fokin, “Vibration elimination in pipe-lines for transport of two-phase and boiling flows”, Teploenergetika – Thermal Engineering, 1996, no. 3, 41–46
[9] Ahmed M. Nagib Elmekawy, Mohamed A. Shabara, Hassan Elgamal, Bassuny El-Souhily, “Numerical analysis of the prediction of the two-phase flow rate by measuring vibration of pipelines”, ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE2017-71038, 04AT05A039, 11 pp. | DOI
[10] Wan Yi, Zhao Jianhua, Zhang Ling, “Mathematical modeling of coupled vibration of curved pipes conveying stratified two-phase flow”, Chinese Journal of Applied Mechanics, 32 (2015) | DOI
[11] E. Z. Yagubov, N. D. Tskhadaya, Z. Kh. Yagubov, “Multichannel pipelines for oil and gas media transportation and a restoration of the depreciated oil and gas pipelines”, Nauchnye trudy, 2013, no. 1, 57–63
[12] Jinzhe Gong, Aaron Zecchin, Martin Lambert, Angus Simpson, “Study on the frequency response function of viscoelastic pipelines using a multi-element Kevin-Voigt model”, Procedia Engineering, 119 (2015), 226–234 | DOI
[13] T. Y. Hao, “Establishment of mathematical model of buried pipeline on nonlinear soil dynamic model”, Advanced Materials Research, 452-453 (2012), 334–338 | DOI
[14] F. B. Badalov, B. A. Khudayarov, A. Abdukarimov, “Effect of the hereditary kernel on the solution of linear and nonlinear dynamic problems of hereditary deformable systems”, Journal of Machinery Manufacture and Reliability, 36 (2007), 328–335 | DOI
[15] M. A. Koltunov, Creep and Relaxation, Higher School, M., 1976
[16] H. Dai, L. Wang, Q. Ni, “Dynamics of a fluid-conveying pipe composed of two different materials”, Int. J. Eng. Sci., 73 (2013), 67–76 | DOI
[17] C. Monette, M. J. Pettigrew, “Fluid elastic instability of flexible tubes subjected to two-phase internal flow”, J. Fluids Struct., 19 (2004), 943–956 | DOI
[18] F. B. Badalov, Methods for solving integral and integro-differential equations of the hereditary theory of viscoelasticity, Mekhnat, Tashkent, 1987
[19] F. B. Badalov, Kh. Yusupov, M. Eshmatov, “Some methods of solution of systems of integrodifferential equations encountered in problems of viscoelasticity”, Applied Mathematics and Mechanics, 51 (1987), 867–871 | MR | Zbl
[20] B. A. Khudayarov, “Flutter of a viscoelastic plate in a supersonic gas flow”, International Applied Mechanics, 46:4 (2010), 455–460 | DOI | MR | Zbl
[21] B. A. Khudayarov, “Numerical Analysis of the nonlinear oscillation of viscoelastic plates”, International Applied Mechanics, 41 (2005), 538–542 | DOI | Zbl
[22] B. A. Khudayarov, N. G. Bandurin, “Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow”, Journal of Applied Mechanics and Technical Physics, 48 (2007), 279–284 | DOI | Zbl
[23] B. A. Khudayarov, F. Zh. Turaev, “Numerical simulation of nonlinear oscillations of a viscoelastic pipeline with fluid”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 5(43), 90–98 | DOI