Mots-clés : convergence
@article{VTGU_2019_61_a7,
author = {M. S. Pavlov and A. A. Svetashkov and N. A. Kupriyanov},
title = {Modified formulation of the iterative algorithm for solving linear viscoelasticity problems based on separation of time and spice variables},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {82--94},
year = {2019},
number = {61},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_61_a7/}
}
TY - JOUR AU - M. S. Pavlov AU - A. A. Svetashkov AU - N. A. Kupriyanov TI - Modified formulation of the iterative algorithm for solving linear viscoelasticity problems based on separation of time and spice variables JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 82 EP - 94 IS - 61 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_61_a7/ LA - ru ID - VTGU_2019_61_a7 ER -
%0 Journal Article %A M. S. Pavlov %A A. A. Svetashkov %A N. A. Kupriyanov %T Modified formulation of the iterative algorithm for solving linear viscoelasticity problems based on separation of time and spice variables %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 82-94 %N 61 %U http://geodesic.mathdoc.fr/item/VTGU_2019_61_a7/ %G ru %F VTGU_2019_61_a7
M. S. Pavlov; A. A. Svetashkov; N. A. Kupriyanov. Modified formulation of the iterative algorithm for solving linear viscoelasticity problems based on separation of time and spice variables. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 61 (2019), pp. 82-94. http://geodesic.mathdoc.fr/item/VTGU_2019_61_a7/
[1] R. Lakes, Viscoelastic Materials, Cambridge University Press, N.Y., 2009, 461 pp. | DOI
[2] M. Pavlov et. al., “Mathematical model of composite fibre-glass aramide-wired cord rheological properties”, 13th International Conference of Students and Young Scientists on Prospect of Fundamental Sciences Development, PFSD 2016 (Tomsk, Russian Federation, 26–29 April 2016), AIP Conference Proceeding, 1772, American Institute of Physics, 2016, 6 pp. | DOI
[3] S. Doubal, J. Doubal, Theory of Viscoelasticity Handbook, Delter, 2014, 81 pp.
[4] A. R. Rzhanitsyn, Creep theory, Izdatel'stvo literatury po stroitel'stvu, M., 1968
[5] J. Cl. Maxwell, “On the Dynamical Theory of Gases”, Philosophical Transactions, 157 (1867), 49–88 | DOI
[6] L. Boltzman, “Zur Theorie der Elastischen Nachwirkung”, Wiener Berichte, 70 (1874), 275–306 | DOI
[7] V. Volterra, Lecons sur les fonctions de lignes, Gautierr Villars, Paris, 1912, 230 pp.
[8] V. Volterra, Theory of Functionals and of Integral and integrodifferential Equations, Blackie Son Limited, London–Glasgow, 1930, 226 pp. | Zbl
[9] A. A. Adamov, V. P. Matveenko, N. A. Trufanov, I. N. Shardakov, Applied viscoelasticity methods, UrO RAN, Ekaterinburg, 2003
[10] A. A. Il'yushin, B. E. Pobedrya, Foundations of the mathematical theory of thermal viscoelasticity, Nauka, M., 1970 | MR
[11] J. N. Reddy, An Introduction to Continuum Mechanics, Cambridge University Press, N.Y., 2008, 449 pp. | DOI | MR
[12] A. C. Pipkin, Lectures of Viscoelasticity Theory, Springer Verlag, N.Y., 1986, 181 pp. | DOI
[13] W. Flugge, Viscoelasticity, Blaisdell Press, N.Y., 1967, 187 pp. | MR
[14] R. M. Cristensen, Theory of Viscoelasticity: An Introduction, Academic, N.Y., 1980, 364 pp.
[15] M. A. Koltunov, V. P. Mayboroda, V. G. Zubchaninov, Strength calculations for the products made of polymeric materials, Vysshaya shkola, M., 1983
[16] R. A. Schapery, “On the characterization of nonlinear viscoelastic materials”, Polymer Engineering and Science, 9:4 (1969), 295–310 | DOI
[17] Y. Tang, T. Li, X. Ma, “Creep and recovery behavior analysis of space mesh structures”, Acta Astronautica, 2016, no. 128, 455–463 | DOI
[18] K. Kwok, S. Pellegrino, “Micromechanics Models for Viscoelastic Plain-Weave Composite Tape Springs”, AIAA Journal, 55:1 (2017), 309–321 | DOI
[19] R. L. Taylor, K. S. Pister, G. L. Goudreas, “Thermochemical analysis of viscoelastic solids”, Int. J. for Numerical Methods in Engineering, 2 (1970), 45–59 | DOI | Zbl
[20] J. C. Simo, “On fully three-dimensional finite strain viscoelastic damage model: Formulation and computational aspects”, Computer. Methods In Applied Mechanics and Engineering, 60:2 (1987), 153–173 | DOI | Zbl
[21] R. A. Schapery, “Analysis of viscoelastic composite materials”, J. Composite Materials, 1:3 (1967), 228–267 | DOI
[22] V. I. Malyy, N. A. Trufanov, “Methods of quasi-constant operators in the theory of viscoelasticity of the anisotropic materials”, Izvestiya Akademii Nauk SSSR. Mekhanika tverdogo tela, 1987, no. 6, 148–154
[23] R. Haj-Ali, A. Muliana, “Numerical finite element formulation of the schapery non-linear viscoelastic material model”, Int. J. for Numerical Methods in Engineering, 2004, no. 59, 25–45 | DOI | Zbl
[24] I. Tsukrov et al, “Numerical modeling of nonlinear elastic components of mooring systems”, IEEE J. Oceanic Engineering, 30:1 (2005), 37–46 | DOI
[25] R. G. Kulikov, N. A. Trufanov, “Iterative method for solving quasistatic nonlinear viscoelastic problems”, Computating Continuum Mechanics, 2:3 (2009), 44–56
[26] S. P. Barba, “Method of elastic solutions to the problem of transient creep”, Uchenye zapiski TSAGI, 21:5 (1990), 112–123
[27] S. M. Pavlov, A. A. Svetashkov, “Iteration method for solving linear viscoelasticity problems”, Russian Physics Journal, 36:4 (1993), 129–136 | DOI | MR
[28] A. Svetashkov, N. Kupriyanov, K. Manabaev, “Modification of the iterative method for solving linear viscoelasticity boundary value problems and its implementation by finite element method”, Acta Mechanica, 229:6 (2018), 2539–2559 | DOI | MR | Zbl
[29] A. A. Svetashkov, Applied problems of mechanics of viscoelastic materials, Izdatel'stvo Tomskogo politekhnicheskogo universiteta, Tomsk, 2012
[30] B. E. Pobedrya, Numerical methods in the theory of elasticity and plasticity, Izdatel'stvo MGU, M., 1995
[31] Yu. N. Rabotnov, Elements of hereditary mechanics of solids, Nauka, M., 1977