Criterion for binary decomposability of an algebraic operation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 61 (2019), pp. 11-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, the author considers $n$-ary algebraic operations and their properties. There is problem to find out conditions under which a ternary operation can be decomposed into composition of two binary ones. Not every third operation is decomposed into such composition. An example of an indecomposable operation was built by the author earlier, in previous article in 2009. Now the problem has been solved, a criterion that establishes the relationship between decomposability of a ternary operation into two binary operations and the rank of the auxiliary matrix which can be constructed has been proved. Initially, each ternary operation is associated with a 4-dimensional matrix consisting of its structural constants. However, the idea is to reduce the calculation to flat matrices, for which such concepts as rank and determinant are well applied. The resulting criterion can be widely used to construct computer programs that can answer questions about whether an operation is decomposable into a composition of two binary operations.
Keywords: binary operation, $n$-ary operation, tensor, binary decomposability.
@article{VTGU_2019_61_a1,
     author = {M. A. Prikhodovsky},
     title = {Criterion for binary decomposability of an algebraic operation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {11--18},
     year = {2019},
     number = {61},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_61_a1/}
}
TY  - JOUR
AU  - M. A. Prikhodovsky
TI  - Criterion for binary decomposability of an algebraic operation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 11
EP  - 18
IS  - 61
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_61_a1/
LA  - ru
ID  - VTGU_2019_61_a1
ER  - 
%0 Journal Article
%A M. A. Prikhodovsky
%T Criterion for binary decomposability of an algebraic operation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 11-18
%N 61
%U http://geodesic.mathdoc.fr/item/VTGU_2019_61_a1/
%G ru
%F VTGU_2019_61_a1
M. A. Prikhodovsky. Criterion for binary decomposability of an algebraic operation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 61 (2019), pp. 11-18. http://geodesic.mathdoc.fr/item/VTGU_2019_61_a1/

[1] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Endomorphism rings of abelian groups, Kluwer Acad. Publ., Boston, 2003 | MR | Zbl

[2] P. A. Krylov, A. R. Chekhlov, “Abelian torsion-free groups with a large number of endomorphisms”, Proceedings of the Steklov Institute of Mathematics, 2001, suppl. 2, 156–168 | MR

[3] S. Ya. Grinshpon, “On the equality to zero of the homomorphism group of abelian groups”, Izv. Vyssh. Uchebn. Zaved. Ser. Mat., 42:9 (1998), 39–43 | MR | Zbl

[4] S. A. Chunikhin, “To the theory of non-associative n-groups”, Dokl. Akad. Nauk SSSR, 48:1 (1945), 7–10 | Zbl

[5] F. N. Sokhatskii, “On associativity of multiplace operations”, Diskretnaya Matematika, 4:1 (1992), 66–84 | MR

[6] W. Dudek, K. Glazek, B. Gleichgewicht, “A note on the axioms of n-groups”, Colloq. Math. Soc. J. Bolyai, 29 (1977), 195–202 | MR

[7] K. Glazek, “Bibliographi of n-groups (poliadic groups) and same group like n-ary sistems”, Proc. of the sympos. $n$-ary structures (Skopje, 1982), 1982, 259–289 | MR

[8] J. Uvsan, n-Groups in the light of the neutral operations, Mathematika Moravica, Special Vol., 2006, 162 pp. | MR

[9] A. M. Galmak, “n-Ary groups”, Hypercomplex Numbers in Geometry and Physics, 4:2(8) (2007), 76–95

[10] A. M. Galmak, N. A. Shchuchkin, “n-Ary analogues of the group commutant”, Chebyshevskiy sbornik, 10:2(30) (2009), 4–9 | MR | Zbl

[11] V. M. Kusov, N. A. Schuchkin, “Free abelian n-ary groups defined by cyclic groups”, Chebyshevskiy sbornik, 12:2 (2011), 68–76 | MR | Zbl

[12] N. A. Schuchkin, “The free abelian n-ary groups”, Chebyshevskiy sbornik, 12:2 (2011), 163–170 | MR

[13] V. M. Kusov, N. A. Schuchkin, “Endomorphisms of abelian semicyclic n-ary groups”, Informatics and Cybernetics, 2018, no. 1(11), 65–75

[14] M. A. Prikhodovskii, “On some classes of n-ary algebraic operations”, Tomsk State University Journal of Mathematics and Mechanics, 2009, no. 2(6), 48–54

[15] M. A. Prikhodovsky, “Application of multidimensional matrixes for studying hypercomplex numbers and finite-dimension algebras”, Tomsk State University Journal, 2004, no. 284, 27–30