Numerical simulation of the liquid column collapse in the reservoirs of different shapes
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 119-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical simulation of three different cases of liquid column collapse is carried out. These are the collapses of hexahedral liquid column in a cubic reservoir, cylindrical liquid column, and ringshaped liquid column in a cylindrical reservoir. Mathematical modeling is based on the volume of fluid method. The obtained results show that the lower the liquid column, the longer the liquid front reaches the opposite wall of the reservoir. The velocity maximum is observed at the flow front. The velocity of the front depends on the shape of liquid column in the initial stage. The dimensionless time of passing dimensionless distance of 3.0 in a cylindrical reservoir is equal to 2.58 and 1.76 for diverging and converging waves, respectively, while in a cubic reservoir, the time is equal to 2.09. The time dependences for position of the liquid front, liquid level, pressure value at the control point on the reservoir wall in the process of liquid column collapse are obtained. It is shown that the liquid level drop occurs faster in the case of cylindrical column collapse, and the flow flowing onto the wall is less deep and less speedy.
Keywords: numerical simulation, collapse of a liquid column, volume of fluid method.
@article{VTGU_2019_60_a8,
     author = {I. V. Morenko},
     title = {Numerical simulation of the liquid column collapse in the reservoirs of different shapes},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {119--131},
     year = {2019},
     number = {60},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a8/}
}
TY  - JOUR
AU  - I. V. Morenko
TI  - Numerical simulation of the liquid column collapse in the reservoirs of different shapes
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 119
EP  - 131
IS  - 60
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a8/
LA  - ru
ID  - VTGU_2019_60_a8
ER  - 
%0 Journal Article
%A I. V. Morenko
%T Numerical simulation of the liquid column collapse in the reservoirs of different shapes
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 119-131
%N 60
%U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a8/
%G ru
%F VTGU_2019_60_a8
I. V. Morenko. Numerical simulation of the liquid column collapse in the reservoirs of different shapes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 119-131. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a8/

[1] E. V. Davydova, V. N. Korchagova, “Open-source software for modelling of free surface flows”, Proceedings of ISP RAS, 28:1 (2016), 243–258 | DOI

[2] J. C. Martin, W. J. Moyce, “An experimental study of the collapse of liquid columns on a rigid horizontal plane”, Phil. Trans. Roy. Soc. London, 244:882 (1952), 312–324 | DOI

[3] L. Lobovsky, E. Botia-Vera, F. Castellana, J. Mas-Soler, A. Souto-Iglesias, “Experimental investigation of dynamic pressure loads during dam break”, J. Fluids Struct., 48 (2014), 407–434 | DOI

[4] S. Koshizuka, Y. Oka, “Moving-Particle Semi-Implicit Method for fragmentation of incompressible fluid”, Nuclear Science and Engineering, 1996, no. 123, 421–434 | DOI

[5] C. Hu, M. Sueyoshi, “Numerical simulation and experiment on dam break problem”, J. Marine Science and Application, 2010, no. 9, 109–114 | DOI

[6] A. Zh. Zhainakov, A. Y. Kurbanaliev, “Verification of the open package OpenFOAM on dam break problems”, Thermophysics and Aeromechanics, 20:4 (2013), 451–461 | DOI | MR

[7] K. E. Afanas'ev, A. Yu. Popov, “Dam breaking process modeling by SPH method”, Vestnik NGU. Matematika, mekhanika, informatika — Journal of Mathematical Sciences, 9:3 (2009), 3–22 | Zbl

[8] V. A. Kocheryzhkin, “Numerical simulation of the viscous fluid flow using SPH-method”, Vestnik of Saint Petersburg university. Mathematics. Mechanics. Astronomy, 2011, no. 3, 112–115

[9] A. I. Khrabry, E. M. Smirnov, D. K. Zaytsev, “Influence of turbulence model on the results of simulation of dambreak flow about an obstacle”, St. Petersburg Polytechnic University Journal - Physics and Mathematics, 2013, no. 1 (165), 182–187

[10] A. I. Khrabry, D. K. Zaytsev, E. M. Smirnov, “Development and application of a specialized parallel code for numerical simulation of unsteady turbulent free-surface flows”, Journal of Ufa State Aviation Technical University, 20:3 (73) (2016), 153–163

[11] K. M.T. Kleefsman, G. Fekken, A. E.P. Veldman, B. Iwanowski, B. Buchner, “A Volume-of-Fluid based simulation method for wave impact problems”, Journal of Computational Physics, 206 (2005), 363–393 | DOI | MR | Zbl

[12] H. Ozmen-Cagatay, S. Kocaman, “Dam-Break Flow in the Presence of Obstacle: Experiment and CFD Simulation, Engineering Applications of Computational”, Fluid Mechanics, 5:4 (2011), 541–552 | DOI

[13] B. V. Boshenyatov, D. G. Lisin, “Numerical simulation of tsunami type waves in a hydrodynamic channel”, Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 6 (26), 45–55

[14] B. V. Boshenyatov, K. N. Zhiltsov, “Investigation of the interaction of tsunami waves and submerged obstacles of finite thickness in a hydrodynamic wave flume”, Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 51, 86–103 | DOI | MR

[15] C. W. Hirt, B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Computational Physics, 39:1 (1981), 201–225 | DOI | Zbl

[16] F. R. Menter, “Two-equation eddy viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605 | DOI

[17] A. V. Garbaruk, M. Kh. Strelets, M. L. Shur, Simulation of the turbulence when computing complex flows, Izdatel'stvo Politekhnicheskogo universiteta, St. Petersburg, 2012, 88 pp.

[18] OpenFOAM The open source CFD toolbox, http://www.openfoam.com