@article{VTGU_2019_60_a8,
author = {I. V. Morenko},
title = {Numerical simulation of the liquid column collapse in the reservoirs of different shapes},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {119--131},
year = {2019},
number = {60},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a8/}
}
TY - JOUR AU - I. V. Morenko TI - Numerical simulation of the liquid column collapse in the reservoirs of different shapes JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 119 EP - 131 IS - 60 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a8/ LA - ru ID - VTGU_2019_60_a8 ER -
%0 Journal Article %A I. V. Morenko %T Numerical simulation of the liquid column collapse in the reservoirs of different shapes %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 119-131 %N 60 %U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a8/ %G ru %F VTGU_2019_60_a8
I. V. Morenko. Numerical simulation of the liquid column collapse in the reservoirs of different shapes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 119-131. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a8/
[1] E. V. Davydova, V. N. Korchagova, “Open-source software for modelling of free surface flows”, Proceedings of ISP RAS, 28:1 (2016), 243–258 | DOI
[2] J. C. Martin, W. J. Moyce, “An experimental study of the collapse of liquid columns on a rigid horizontal plane”, Phil. Trans. Roy. Soc. London, 244:882 (1952), 312–324 | DOI
[3] L. Lobovsky, E. Botia-Vera, F. Castellana, J. Mas-Soler, A. Souto-Iglesias, “Experimental investigation of dynamic pressure loads during dam break”, J. Fluids Struct., 48 (2014), 407–434 | DOI
[4] S. Koshizuka, Y. Oka, “Moving-Particle Semi-Implicit Method for fragmentation of incompressible fluid”, Nuclear Science and Engineering, 1996, no. 123, 421–434 | DOI
[5] C. Hu, M. Sueyoshi, “Numerical simulation and experiment on dam break problem”, J. Marine Science and Application, 2010, no. 9, 109–114 | DOI
[6] A. Zh. Zhainakov, A. Y. Kurbanaliev, “Verification of the open package OpenFOAM on dam break problems”, Thermophysics and Aeromechanics, 20:4 (2013), 451–461 | DOI | MR
[7] K. E. Afanas'ev, A. Yu. Popov, “Dam breaking process modeling by SPH method”, Vestnik NGU. Matematika, mekhanika, informatika — Journal of Mathematical Sciences, 9:3 (2009), 3–22 | Zbl
[8] V. A. Kocheryzhkin, “Numerical simulation of the viscous fluid flow using SPH-method”, Vestnik of Saint Petersburg university. Mathematics. Mechanics. Astronomy, 2011, no. 3, 112–115
[9] A. I. Khrabry, E. M. Smirnov, D. K. Zaytsev, “Influence of turbulence model on the results of simulation of dambreak flow about an obstacle”, St. Petersburg Polytechnic University Journal - Physics and Mathematics, 2013, no. 1 (165), 182–187
[10] A. I. Khrabry, D. K. Zaytsev, E. M. Smirnov, “Development and application of a specialized parallel code for numerical simulation of unsteady turbulent free-surface flows”, Journal of Ufa State Aviation Technical University, 20:3 (73) (2016), 153–163
[11] K. M.T. Kleefsman, G. Fekken, A. E.P. Veldman, B. Iwanowski, B. Buchner, “A Volume-of-Fluid based simulation method for wave impact problems”, Journal of Computational Physics, 206 (2005), 363–393 | DOI | MR | Zbl
[12] H. Ozmen-Cagatay, S. Kocaman, “Dam-Break Flow in the Presence of Obstacle: Experiment and CFD Simulation, Engineering Applications of Computational”, Fluid Mechanics, 5:4 (2011), 541–552 | DOI
[13] B. V. Boshenyatov, D. G. Lisin, “Numerical simulation of tsunami type waves in a hydrodynamic channel”, Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 6 (26), 45–55
[14] B. V. Boshenyatov, K. N. Zhiltsov, “Investigation of the interaction of tsunami waves and submerged obstacles of finite thickness in a hydrodynamic wave flume”, Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 51, 86–103 | DOI | MR
[15] C. W. Hirt, B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Computational Physics, 39:1 (1981), 201–225 | DOI | Zbl
[16] F. R. Menter, “Two-equation eddy viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605 | DOI
[17] A. V. Garbaruk, M. Kh. Strelets, M. L. Shur, Simulation of the turbulence when computing complex flows, Izdatel'stvo Politekhnicheskogo universiteta, St. Petersburg, 2012, 88 pp.
[18] OpenFOAM The open source CFD toolbox, http://www.openfoam.com