Free oscillations of an ideal fluid in a rectangular vessel with a horizontal permeable membrane
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 107-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study aims to determine the shape of the free surface of an ideal fluid executing free oscillations in a rectangular vessel divided by a horizontal partially permeable membrane. The plane problem is solved analytically. The motion of the ideal fluid is simulated by solving Laplace's equation for the fluid velocity potential in the region occupied by fluid. Two regions are considered: the area between the bottom of the vessel and membrane and the area between membrane and free surface. On the solid boundary, the impermeability conditions are used; on the free surface, the Cauchy–Lagrange integral. On the membrane, the boundary condition is set as follows: the normal velocity of the fluid near membrane in both regions is proportional to the difference in the values of fluid velocity potential on either side of membrane. In the considered regions, the Laplace's equation is solved using the method of separation of variables. To determine the dependence of the velocity potential on time, the boundary condition on the free surface is used, which is transformed for the case of small oscillations. This same condition yields the formula for determining the shape of the free surface of fluid at any time instant in terms of deviation of the free surface points from equilibrium position. The method described in this paper has been applied for the cases of different permeability of horizontal membrane. The obtained results have been compared with currently available solutions to similar problems.
Keywords: ideal fluid, velocity potential, method of separation of variables.
Mots-clés : membrane, Laplace's equation
@article{VTGU_2019_60_a7,
     author = {A. V. Merzlyakov and E. A. Kryukova},
     title = {Free oscillations of an ideal fluid in a rectangular vessel with a horizontal permeable membrane},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {107--118},
     year = {2019},
     number = {60},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a7/}
}
TY  - JOUR
AU  - A. V. Merzlyakov
AU  - E. A. Kryukova
TI  - Free oscillations of an ideal fluid in a rectangular vessel with a horizontal permeable membrane
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 107
EP  - 118
IS  - 60
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a7/
LA  - ru
ID  - VTGU_2019_60_a7
ER  - 
%0 Journal Article
%A A. V. Merzlyakov
%A E. A. Kryukova
%T Free oscillations of an ideal fluid in a rectangular vessel with a horizontal permeable membrane
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 107-118
%N 60
%U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a7/
%G ru
%F VTGU_2019_60_a7
A. V. Merzlyakov; E. A. Kryukova. Free oscillations of an ideal fluid in a rectangular vessel with a horizontal permeable membrane. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 107-118. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a7/

[1] D. I. Borisov, Yu. I. Rudnev, “Free oscillations of an ideal fluid in the vessels with perforated membrane”, Applied Hydromechanics, 12:2 (2010), 8–19

[2] D. A. Galitsyn, V. A. Trotsenko, “To the calculation of the frequencies and added masses of a fluid in a rectangular vessel with membranes in the diametral plane of its symmetry”, Applied Hydromechanics, 2(74):1 (2000), 20–27 | Zbl

[3] D. A. Galitsyn, V. A. Trotsenko, “Fluid oscillations in a movable rectangular vessel with elastic membranes”, Applied Hydromechanics, 2(74):4 (2000), 11–23 | MR | Zbl

[4] Yu. N. Kononov, E. A. Tatarenko, “Free vibrations of the elastic membranes and two-layer fluid in a rectangular channel with an elastic bottom”, Applied Hydromechanics, 10:1 (2008), 33–38 | Zbl

[5] A. A. Pozhalostin, D. A. Goncharov, V. V. Kokushkin, “Small oscillations of two-layer liquid in view permeability of separator”, Herald of the Bauman MSTU. Natural Sciences, 2014, no. 5, 109–116

[6] A. A. Pozhalostin, D. A. Goncharov, V. Kokushkin, “Experimental and analytical method for determining a drag coefficient of the double-layer liquid separator”, Science and Education of the Bauman MSTU, 2015, no. 4, 130–140 | DOI

[7] H. Alemi Ardakani, T. J. Bridges, M. R. Turner, “Dynamic coupling between horizontal vessel motion and two-layer shallow-water sloshing”, J. Fluids and Structures, 59 (2015), 432–460 | DOI

[8] M. Nezami, A. Oveisi, M. Mehdi Mohammadi, “Standing Gravity Waves in a Horizontal Circular Eccentric Annular Tank”, J. Pressure Vessel Technology, 136, August (2014), 041301, 9 pp. | DOI

[9] N. E. Kochin, I. A. Kibel', N. V. Roze, Theoretical fluid mechanics, v. 1, GIFML, M., 1963, 584 pp.

[10] V. A. Marchenko, E. Ya. Khruslov, Boundary problems in the areas with a fine-grained boundary, Naukova dumka, Kiev, 1974, 280 pp. | MR

[11] A. N. Tikhonov, A. A. Samarskiy, Equations of mathematical physics, Nauka, M., 1977, 742 pp. | MR

[12] L. N. Sretenskii, Theory of wave motions in a fluid, Nauka, M., 1977, 816 pp.