Existence and uniqueness of solutions for nonlinear impulsive differential equations with nonlocal boundary conditions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 61-72
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Keywords: nonlocal boundary conditions, impulsive systems, existence and uniqueness of solutions, continuous dependence of the solutions.
@article{VTGU_2019_60_a4,
     author = {M. J. Mardanov and Ya. A. Sharifov and F. M. Zeynally},
     title = {Existence and uniqueness of solutions for nonlinear impulsive differential equations with nonlocal boundary conditions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {61--72},
     year = {2019},
     number = {60},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a4/}
}
TY  - JOUR
AU  - M. J. Mardanov
AU  - Ya. A. Sharifov
AU  - F. M. Zeynally
TI  - Existence and uniqueness of solutions for nonlinear impulsive differential equations with nonlocal boundary conditions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 61
EP  - 72
IS  - 60
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a4/
LA  - ru
ID  - VTGU_2019_60_a4
ER  - 
%0 Journal Article
%A M. J. Mardanov
%A Ya. A. Sharifov
%A F. M. Zeynally
%T Existence and uniqueness of solutions for nonlinear impulsive differential equations with nonlocal boundary conditions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 61-72
%N 60
%U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a4/
%G ru
%F VTGU_2019_60_a4
M. J. Mardanov; Ya. A. Sharifov; F. M. Zeynally. Existence and uniqueness of solutions for nonlinear impulsive differential equations with nonlocal boundary conditions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 61-72. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a4/

[1] A. M. Samoilenko, N. A. Perestyuk, Differential equations with impulse effect, Vishcha Shkola, Kiev, 1987, 287 pp.

[2] A. Halanay, D. Wexler, Qualitative theory of impulse systems, Mir, M., 1971, 309 pp. (in Russian) | MR

[3] N. A. Perestyk, V. A. Plotnikov, A. M. Samoilenko, N. V. Skripnik, Differential equations with impulse effect: multivalued right-hand sides with discontinuities, DeGruyter Stud. Math., 40, Walter de Gruter Co, Berlin, 2011 | MR

[4] A. M. Samoilenko, N. A. Perestyk, Impulsive differential equations, World Sci, Singapore, 1995 | MR | Zbl

[5] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989, 434 pp. | DOI | MR | Zbl

[6] A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and fredholm boundary-value problems, Brill, Utrecht, 2004 | MR

[7] A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems, 2nd ed., Walter de Gruyter GmbH, Berlin–Boston, 2016, 314 pp. | MR

[8] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, Contemporary mathematics and its application, Hindawi Publishing Corporation, New York, 2006 | MR | Zbl

[9] M. J. Mardanov, A. Sharifov Yagub, H. Molaei Habib, “Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions”, Electronic J. Differential Equations, 259 (2014), 1–8 | MR

[10] Annamalai Anguraj, Mani Mallika Arjunan, “Existence and uniqueness of mild and classical solutions of impulsive evolution equations”, Differential Equations, 111 (2005), 1–8 | MR

[11] Sh. Ji, Sh. Wen, “Nonlocal cauchy problem for impulsive differential equations in Banach spaces”, International J. Nonlinear Science, 10:1 (2010), 88–95 | MR | Zbl

[12] M. Li, M. Han, “Existence for neutral impulsive functional differential equations with nonlocal conditions”, Indagationes Mathematicae, 20:3 (2009), 435–451 | DOI | MR | Zbl

[13] L. Bin, L. Xinzhi, L. Xiaoxin, “Robust global exponential stability of uncertain impulsive systems”, Acta Mathematika Scientia, 25:B(1) (2005), 161–169 | DOI | MR | Zbl

[14] Y. A. Sharifov, “Optimal control problem for the impulsive differential equations with non-local boundary conditions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz. Mat. Nauki, 2013, no. 4 (33), 34–45 | DOI | Zbl

[15] Y. A. Sharifov, “Optimal control of impulsive systems with nonlocal boundary conditions”, Russian Mathematics, 57:2 (2013), 65–72 | DOI | MR | Zbl

[16] A. Ashyralyev, Y. A. Sharifov, “Optimal control problems for impulsive systems with integral boundary conditions”, EJDE, 2013, no. 80, 1–11 | DOI | MR

[17] Y. A. Sharifov, N. B. Mammadova, “Optimal control problem described by impulsive differential equations with nonlocal boundary conditions”, Differential equations, 50:3 (2014), 403–411 | DOI | MR | Zbl

[18] Y. A. Sharifov, “Conditions optimality in problems control with systems impulsive differential equations under non-local boundary conditions”, Ukrainian Mathematical Journal, 64:6 (2012), 836–847 | DOI | MR | Zbl

[19] A. Ashyralyev, Y. A. Sharifov, “Existence and uniqueness of solutions for nonlinear impulsive differential equations with two-point and integral boundary conditions”, Advances in Difference Equations, 2013 (2013), 173 | DOI | MR | Zbl