@article{VTGU_2019_60_a3,
author = {I. A. Kolesnikov},
title = {Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {42--60},
year = {2019},
number = {60},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a3/}
}
TY - JOUR AU - I. A. Kolesnikov TI - Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 42 EP - 60 IS - 60 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a3/ LA - ru ID - VTGU_2019_60_a3 ER -
%0 Journal Article %A I. A. Kolesnikov %T Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 42-60 %N 60 %U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a3/ %G ru %F VTGU_2019_60_a3
I. A. Kolesnikov. Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 42-60. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a3/
[1] W. S. Hussenpflug, “Elliptic integrals and the Schwarz-Christoffel transformation”, Computers Math. Applic., 33:12 (1997), 15–114 | DOI | MR
[2] I. A. Aleksandrov, “Conformal Mappings of a Half-Plane onto Domains with Transfer Symmetry”, Russian Mathematics (Iz. VUZ), 43:6 (1999), 13–16 | MR | Zbl
[3] I. L. Verbitskii, “Quasistatic green function method as a powerful tool of diffraction problems solving”, Materials of the VI International conference “Mathematical methods in electromagnetic theory” (Lviv, Ukraine, 1996), 358–361 | DOI
[4] T. A. Driscoll, L. N. Trefethen, Schwarz-Christoffel mapping, Cambridge Monographs on Applied and Comput. Math., 8, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[5] M. Brady, C. Pozrikidis, “Diffusive transport across irregular and fractal walls”, Proceedings the royal of society A, 442:1916 (1993), 571–583 | DOI
[6] Yu. A. Tsarin, “Conformal mapping technique in the theory of periodic structures”, Microwave and Optical Technology Letters, 26:1 (2000), 57–61 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[7] J. M. Floryan, “Conformal mapping based coordinate generation method for flows in periodic configurations”, J. Computational Physics, 62:1 (1986), 221–247 | DOI | MR | Zbl
[8] I. A. Aleksandrov, L. S. Kopaneva, “Loewner's sets of mappings of a half-plane on domains with symmetry of translation”, Tomsk State University Journal, 2004, no. 284, 5–7
[9] S. A. Kopanev, L. S. Kopaneva, “The Christoffel–Schwarz type formula for a polygon with the countable number of vertices”, Tomsk State University Journal, 280:280 (2003), 52–54
[10] I. A. Kolesnikov, L. S. Kopaneva, “Conformal mapping onto numerable polygon with double symmetry”, Russian Mathematics, 58:12 (2014), 32–40 | DOI | MR | Zbl
[11] I. A. Kolesnikov, “Mapping onto a circular numerable polygon with the symmetry of translation”, Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 2 (22), 33–43
[12] R. Wegmann, “Methods for numerical conformal mapping”, Handbook of Complex Analysis: Geometric Function Theory, v. 2, Elsevier, Amsterdam, 2005 | MR | Zbl
[13] P. P. Kufarev, “On a method of numerical determination of the parameters in the Schwarz-Christoffel integral”, Doklady Acad. Nauk SSSR, 57:6 (1947), 535–537 | Zbl
[14] I. A. Aleksandrov, Parametrical Extensions in the Theory of Univalent Functions, Nauka, M., 1976 (In Russian)
[15] Aleksandrov I. A. (ed.), Works of P.P. Kufarev: on the occasion of centenary of the birth, Publishing House NTL, Tomsk, 2009
[16] Yu. V. Chistyakov, Chislennyy metod opredeleniya funktsii, konformno otobrazhayushchey krug na mnogougol'niki, diss. for the degree of Ph.D., Tomsk State University, 1953
[17] T. R. Hopkins, D. E. Roberts, “Kufarev's method for determining the Schwarz-Christoffel parameters”, Numer. Math., 1979, no. 33, 353–365 | DOI | MR | Zbl
[18] V. Ya. Gutlyansky, A. O. Zaidan, “On conformal mapping of polygonal regions”, Ukrainian Math. Journal, 45:11 (1993), 1464–1467
[19] V. Ya. Gutlyansky, V. I. Ryazanov, The Geometric and Topological Theory of Functions and Mappings, Naukova Dumka, Kiev, 2011
[20] S. R. Nasyrov, L. Yu. Nizamieva, “Determination of accessory parameters in the mixed inverse boundary-value problem with a polygonal known part of the boundary”, Izv. Sarat. univ-ta. New series. Series Mat. Mech. Comp. science, 11:4 (2011), 34–40
[21] L. Yu. Nizamieva, “Finding accessory parameters in the Schwarz-Christoffel integral by the moving slit method”, Proc. 9th Int. Kazan. Summer Sci. Sch.-Conf. “Theory of Functions, Its Applications, and Related Problems”, Kazan. Math society, Kazan, 192–194
[22] N. N. Nakipov, S. R. Nasyrov, “A parametric method of finding accessory parameters for generalized Schwarz-Christoffel integrals”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 2 (2016), 202–220 | MR
[23] I. A. Kolesnikov, “Determination of accessory parameters for mapping onto a numerable polygon”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2(28), 18–28
[24] B. G. Baybarin, “On a numerical way for the determination of Schwarz derivative parameters for a function conformally mapping the half-plane onto circular domains”, Trudy Tomskogo gos. universiteta, 189 (1966), 123–136 | MR
[25] I. A. Kolesnikov, “On the problem of determining parameters in the Schwarz equation”, Probl. Anal. Issues Anal., 7(25):2 (2018), 50–62 | DOI | MR | Zbl
[26] S. R. Nasyrov, Geometric Problems in the Theory of Ramified Coverings of Riemann Surfaces, Magarif, Kazan, 2008 (In Russian)