Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 42-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper solves the problem of constructing conformal mappings from the half-plane onto a periodic polygon. A periodic polygon $\Delta$ is a simply connected domain with symmetry of translation, i.e. it has the property $L(\Delta)=\Delta$, where $L(w)=w+2\pi$. We consider a polygon with a boundary consisting of a countable number of circular arcs. Moreover, it has a unique prime end at infinity, fixed under the shift $L(w)$. We use a Schwarz-type differential equation for the representation of the mapping. There is a classical problem of determining parameters for equations of this type. They are the preimages of polygon's vertices under the mapping and additional accessory parameters. To determine these parameters, we generalize Kufarev's method. It was proposed for solving the problem of finding parameters in the Schwarz–Christoffel integral. The method, based on Loewner's differential equation, reduces the problem to the Cauchy problem for a system of ordinary differential equations. There is a differential equation of the Loewner type for periodic polygon. Separately, we consider periodic polygons that have mirror symmetry with respect to a couple of vertical lines; their boundaries consist of straight line segments. We give an example of mapping of the half-plane onto a specified periodic polygon with a boundary consisting of circular arcs and determine its parameters using Kufarev's method.
Keywords: conformal mapping, Schwarz equation, Schwarz–Christoffel integral, periodic polygon, accessory parameters, Kufarev's method.
@article{VTGU_2019_60_a3,
     author = {I. A. Kolesnikov},
     title = {Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {42--60},
     year = {2019},
     number = {60},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a3/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 42
EP  - 60
IS  - 60
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a3/
LA  - ru
ID  - VTGU_2019_60_a3
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 42-60
%N 60
%U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a3/
%G ru
%F VTGU_2019_60_a3
I. A. Kolesnikov. Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 42-60. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a3/

[1] W. S. Hussenpflug, “Elliptic integrals and the Schwarz-Christoffel transformation”, Computers Math. Applic., 33:12 (1997), 15–114 | DOI | MR

[2] I. A. Aleksandrov, “Conformal Mappings of a Half-Plane onto Domains with Transfer Symmetry”, Russian Mathematics (Iz. VUZ), 43:6 (1999), 13–16 | MR | Zbl

[3] I. L. Verbitskii, “Quasistatic green function method as a powerful tool of diffraction problems solving”, Materials of the VI International conference “Mathematical methods in electromagnetic theory” (Lviv, Ukraine, 1996), 358–361 | DOI

[4] T. A. Driscoll, L. N. Trefethen, Schwarz-Christoffel mapping, Cambridge Monographs on Applied and Comput. Math., 8, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[5] M. Brady, C. Pozrikidis, “Diffusive transport across irregular and fractal walls”, Proceedings the royal of society A, 442:1916 (1993), 571–583 | DOI

[6] Yu. A. Tsarin, “Conformal mapping technique in the theory of periodic structures”, Microwave and Optical Technology Letters, 26:1 (2000), 57–61 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] J. M. Floryan, “Conformal mapping based coordinate generation method for flows in periodic configurations”, J. Computational Physics, 62:1 (1986), 221–247 | DOI | MR | Zbl

[8] I. A. Aleksandrov, L. S. Kopaneva, “Loewner's sets of mappings of a half-plane on domains with symmetry of translation”, Tomsk State University Journal, 2004, no. 284, 5–7

[9] S. A. Kopanev, L. S. Kopaneva, “The Christoffel–Schwarz type formula for a polygon with the countable number of vertices”, Tomsk State University Journal, 280:280 (2003), 52–54

[10] I. A. Kolesnikov, L. S. Kopaneva, “Conformal mapping onto numerable polygon with double symmetry”, Russian Mathematics, 58:12 (2014), 32–40 | DOI | MR | Zbl

[11] I. A. Kolesnikov, “Mapping onto a circular numerable polygon with the symmetry of translation”, Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 2 (22), 33–43

[12] R. Wegmann, “Methods for numerical conformal mapping”, Handbook of Complex Analysis: Geometric Function Theory, v. 2, Elsevier, Amsterdam, 2005 | MR | Zbl

[13] P. P. Kufarev, “On a method of numerical determination of the parameters in the Schwarz-Christoffel integral”, Doklady Acad. Nauk SSSR, 57:6 (1947), 535–537 | Zbl

[14] I. A. Aleksandrov, Parametrical Extensions in the Theory of Univalent Functions, Nauka, M., 1976 (In Russian)

[15] Aleksandrov I. A. (ed.), Works of P.P. Kufarev: on the occasion of centenary of the birth, Publishing House NTL, Tomsk, 2009

[16] Yu. V. Chistyakov, Chislennyy metod opredeleniya funktsii, konformno otobrazhayushchey krug na mnogougol'niki, diss. for the degree of Ph.D., Tomsk State University, 1953

[17] T. R. Hopkins, D. E. Roberts, “Kufarev's method for determining the Schwarz-Christoffel parameters”, Numer. Math., 1979, no. 33, 353–365 | DOI | MR | Zbl

[18] V. Ya. Gutlyansky, A. O. Zaidan, “On conformal mapping of polygonal regions”, Ukrainian Math. Journal, 45:11 (1993), 1464–1467

[19] V. Ya. Gutlyansky, V. I. Ryazanov, The Geometric and Topological Theory of Functions and Mappings, Naukova Dumka, Kiev, 2011

[20] S. R. Nasyrov, L. Yu. Nizamieva, “Determination of accessory parameters in the mixed inverse boundary-value problem with a polygonal known part of the boundary”, Izv. Sarat. univ-ta. New series. Series Mat. Mech. Comp. science, 11:4 (2011), 34–40

[21] L. Yu. Nizamieva, “Finding accessory parameters in the Schwarz-Christoffel integral by the moving slit method”, Proc. 9th Int. Kazan. Summer Sci. Sch.-Conf. “Theory of Functions, Its Applications, and Related Problems”, Kazan. Math society, Kazan, 192–194

[22] N. N. Nakipov, S. R. Nasyrov, “A parametric method of finding accessory parameters for generalized Schwarz-Christoffel integrals”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 2 (2016), 202–220 | MR

[23] I. A. Kolesnikov, “Determination of accessory parameters for mapping onto a numerable polygon”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2(28), 18–28

[24] B. G. Baybarin, “On a numerical way for the determination of Schwarz derivative parameters for a function conformally mapping the half-plane onto circular domains”, Trudy Tomskogo gos. universiteta, 189 (1966), 123–136 | MR

[25] I. A. Kolesnikov, “On the problem of determining parameters in the Schwarz equation”, Probl. Anal. Issues Anal., 7(25):2 (2018), 50–62 | DOI | MR | Zbl

[26] S. R. Nasyrov, Geometric Problems in the Theory of Ramified Coverings of Riemann Surfaces, Magarif, Kazan, 2008 (In Russian)