On zeros of the combination of products of Bessel functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 5-10

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the function $f_\nu(t)=J_\nu(t)I_{-\nu}(t)+I_\nu(t)J_{-\nu}(t)$, $0\nu1$, $\mathrm{Re}\,t>0$, is investigated. Such functions were little studied in the literature. It is proved that more general functions $f_{\nu,\mu}^{(1),(2)}(t)=J_\nu(t)I_{-\mu}(t)\pm I_\mu(t)J_{-\nu}(t)$ have a countable set of real zeros and a countable set of pure imaginary zeros. The proof uses the well-known Sturm theorem for second-order differential equations. The statement is applied to specific examples. In the case $\nu=1/2$, the function $f_{1/2}(x)=J_{1/2}(x)I_{-1/2}(x)+I_{1/2}(x)J_{-1/2}(x)$ is reduced to an elementary function $f_{1/2}(x)=\frac2{\pi x}(\sin x\cdot\cosh x+\cos x\cdot\sinh x)$, and an asymptotic formula for its positive zeros $x=-\frac\pi4+\pi k+O(e^{-2\pi k})$ is found. Function $\hat{f}_{1/2}(x)=J_{1/2}(x)I_{-1/2}(x)-I_{1/2}(x)J_{-1/2}(x)$ has the following positive zeros: $x=\frac\pi4+\pi k+O(e^{-2\pi k})$.
Keywords: Bessel function, modified Bessel function, set of zeros of the function, Sturm theorem.
@article{VTGU_2019_60_a0,
     author = {A. A. Gimaltdinova and E. P. Anosova},
     title = {On zeros of the combination of products of {Bessel} functions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--10},
     publisher = {mathdoc},
     number = {60},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/}
}
TY  - JOUR
AU  - A. A. Gimaltdinova
AU  - E. P. Anosova
TI  - On zeros of the combination of products of Bessel functions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 5
EP  - 10
IS  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/
LA  - ru
ID  - VTGU_2019_60_a0
ER  - 
%0 Journal Article
%A A. A. Gimaltdinova
%A E. P. Anosova
%T On zeros of the combination of products of Bessel functions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 5-10
%N 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/
%G ru
%F VTGU_2019_60_a0
A. A. Gimaltdinova; E. P. Anosova. On zeros of the combination of products of Bessel functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 5-10. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/