On zeros of the combination of products of Bessel functions
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 5-10
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, the function $f_\nu(t)=J_\nu(t)I_{-\nu}(t)+I_\nu(t)J_{-\nu}(t)$, $0\nu1$,  $\mathrm{Re}\,t>0$, is
investigated. Such functions were little studied in the literature. It is proved that more general
functions $f_{\nu,\mu}^{(1),(2)}(t)=J_\nu(t)I_{-\mu}(t)\pm I_\mu(t)J_{-\nu}(t)$ have a countable set of real zeros and a countable
set of pure imaginary zeros. The proof uses the well-known Sturm theorem for second-order
differential equations. The statement is applied to specific examples. In the case $\nu=1/2$, the
function $f_{1/2}(x)=J_{1/2}(x)I_{-1/2}(x)+I_{1/2}(x)J_{-1/2}(x)$ is reduced to an elementary function
$f_{1/2}(x)=\frac2{\pi x}(\sin x\cdot\cosh x+\cos x\cdot\sinh x)$, and an asymptotic formula for its positive zeros
$x=-\frac\pi4+\pi k+O(e^{-2\pi k})$ is found. Function $\hat{f}_{1/2}(x)=J_{1/2}(x)I_{-1/2}(x)-I_{1/2}(x)J_{-1/2}(x)$ has the
following positive zeros: $x=\frac\pi4+\pi k+O(e^{-2\pi k})$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Bessel function, modified Bessel function, set of zeros of the function, Sturm theorem.
                    
                  
                
                
                @article{VTGU_2019_60_a0,
     author = {A. A. Gimaltdinova and E. P. Anosova},
     title = {On zeros of the combination of products of {Bessel} functions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--10},
     publisher = {mathdoc},
     number = {60},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Gimaltdinova AU - E. P. Anosova TI - On zeros of the combination of products of Bessel functions JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 5 EP - 10 IS - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/ LA - ru ID - VTGU_2019_60_a0 ER -
%0 Journal Article %A A. A. Gimaltdinova %A E. P. Anosova %T On zeros of the combination of products of Bessel functions %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 5-10 %N 60 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/ %G ru %F VTGU_2019_60_a0
A. A. Gimaltdinova; E. P. Anosova. On zeros of the combination of products of Bessel functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 5-10. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/
