On zeros of the combination of products of Bessel functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 5-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the function $f_\nu(t)=J_\nu(t)I_{-\nu}(t)+I_\nu(t)J_{-\nu}(t)$, $0<\nu<1$, $\mathrm{Re}\,t>0$, is investigated. Such functions were little studied in the literature. It is proved that more general functions $f_{\nu,\mu}^{(1),(2)}(t)=J_\nu(t)I_{-\mu}(t)\pm I_\mu(t)J_{-\nu}(t)$ have a countable set of real zeros and a countable set of pure imaginary zeros. The proof uses the well-known Sturm theorem for second-order differential equations. The statement is applied to specific examples. In the case $\nu=1/2$, the function $f_{1/2}(x)=J_{1/2}(x)I_{-1/2}(x)+I_{1/2}(x)J_{-1/2}(x)$ is reduced to an elementary function $f_{1/2}(x)=\frac2{\pi x}(\sin x\cdot\cosh x+\cos x\cdot\sinh x)$, and an asymptotic formula for its positive zeros $x=-\frac\pi4+\pi k+O(e^{-2\pi k})$ is found. Function $\hat{f}_{1/2}(x)=J_{1/2}(x)I_{-1/2}(x)-I_{1/2}(x)J_{-1/2}(x)$ has the following positive zeros: $x=\frac\pi4+\pi k+O(e^{-2\pi k})$.
Keywords: Bessel function, modified Bessel function, set of zeros of the function, Sturm theorem.
@article{VTGU_2019_60_a0,
     author = {A. A. Gimaltdinova and E. P. Anosova},
     title = {On zeros of the combination of products of {Bessel} functions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--10},
     year = {2019},
     number = {60},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/}
}
TY  - JOUR
AU  - A. A. Gimaltdinova
AU  - E. P. Anosova
TI  - On zeros of the combination of products of Bessel functions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 5
EP  - 10
IS  - 60
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/
LA  - ru
ID  - VTGU_2019_60_a0
ER  - 
%0 Journal Article
%A A. A. Gimaltdinova
%A E. P. Anosova
%T On zeros of the combination of products of Bessel functions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 5-10
%N 60
%U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/
%G ru
%F VTGU_2019_60_a0
A. A. Gimaltdinova; E. P. Anosova. On zeros of the combination of products of Bessel functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 5-10. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a0/

[1] Gimaltdinova A.A., “Dirichlet problem for a mixedtype equation with two perpendicular transition lines in a rectangular domain”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 2014, no. 19 (190), 5–16

[2] Jahnke E., Emde F., Lösch F., Tafeln höhere Funktionen, Stuttgart, 1960, 344 pp. | MR

[3] Bateman H., Erdelyi A., Higher Transcendental Functions, v. 2, New York, 1953, 296 pp.

[4] Luke Y.L., Mathematical functions and their approximations, Academic Press Inc., New York, 1975 | MR | Zbl

[5] Kerimov M.K., “Studies on the zeros of Bessel functions and methods for their computation”, Computational mathematics and mathematical physics, 54:9 (2014), 1337–1388 | DOI | DOI | MR | Zbl

[6] Tricomi F.G., Differential equations, Blackie son Limited, 1961, 352 pp. | MR | Zbl

[7] Algazin S.D., “About tabulating the zeros of the Bessel functions with high precision”, Izvestija Tul’skogo gosudarstvennogo universiteta. Estestvennye nauki, 2013, no. 1, 132–141

[8] Gimaltdinova A.A., “The Dirichlet problem for the Lavrent’ev–Bitsadze equation with two type-change lines in a rectangular domain”, Doklady Mathematics, 91:1 (2015), 41–46 | DOI | DOI | MR | Zbl

[9] Gimaltdinova A.A., “Neumann problem for the Lavrent’ev–Bitsadze equation with two type-change lines in a rectangular domain”, Doklady Mathematics, 93:1 (2016), 1–5 | DOI | DOI | MR | Zbl