On determination of gel point
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 53-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the gel-forming compositions exhibiting a low-viscosity Newtonian fluid behavior at the initial stage and a viscoelastic body–gel behavior at the final stage are considered. A gel point is referred to as the time instant when the shear modulus of elasticity of the composition becomes greater than zero. The interaction between sensor and gel-forming composition in the vibration rheometer is numerically studied using the Kelvin–Voigt rheological model. It is revealed that the method that uses the results of two experiments at different frequencies can be applied to determine the gel point within the framework of classical vibration viscosimetry. It is shown that the proposed method is independent of the size of measuring vessel. The algorithm for determining the gel point in the case of the noise presence in the experimental data is described. A test problem is considered using the idealized dependencies of the shear modulus of elasticity and dynamic viscosity on time for gelation process. Based on the test problem solution, the assessment of the impact of the noise factor and length of averaging segment on the results is obtained. The efficiency of proposed method is exposed. Two versions of practical implementation are proposed: two sensors oscillating at their own frequencies or one sensor switching to different harmonics.
Keywords: gel-forming composition, viscosity, elasticity, numerical simulation, gel point.
@article{VTGU_2019_59_a5,
     author = {V. M. Galkin and A. V. Bogoslovskiy and Yu. S. Volkov},
     title = {On determination of gel point},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {53--64},
     year = {2019},
     number = {59},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_59_a5/}
}
TY  - JOUR
AU  - V. M. Galkin
AU  - A. V. Bogoslovskiy
AU  - Yu. S. Volkov
TI  - On determination of gel point
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 53
EP  - 64
IS  - 59
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_59_a5/
LA  - ru
ID  - VTGU_2019_59_a5
ER  - 
%0 Journal Article
%A V. M. Galkin
%A A. V. Bogoslovskiy
%A Yu. S. Volkov
%T On determination of gel point
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 53-64
%N 59
%U http://geodesic.mathdoc.fr/item/VTGU_2019_59_a5/
%G ru
%F VTGU_2019_59_a5
V. M. Galkin; A. V. Bogoslovskiy; Yu. S. Volkov. On determination of gel point. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 53-64. http://geodesic.mathdoc.fr/item/VTGU_2019_59_a5/

[1] Kuvshinov I.V., Kuvshinov V.A., Altunina L.K., “Application of thermotropic compositions for enhanced oil recovery”, Oil Industry, 2017, no. 1, 44–47

[2] Schramm G., A Practical Approach to Rheology and Rheometry, Gebrueder HAAKE, Karlsruhe, 1994

[3] Malkin A.Ya., Isayev A.I., Rheology: Conceptions, Methods, Applications, ChemTec Publishing, Toronto, 2005

[4] GOST 32463-2013. Petroleum products. Determination of the pour point by automatic tilt method., 2013

[5] Rude E., Llorens J., Mans C., “Rheological gel point determinations in silica and titanium based sol-gel systems”, Progress and Trends in Rheology, Proceedings of the fifth European rheology conference (Portoroz, Slovenia, September 6–11, 1998), 613–614 | DOI

[6] Mortimer S., Ryan A.J., Stanford J.L., “Rheological behavior and gel-point determination for a model lewis acid-initiated chain growth epoxy resin”, Macromolecules, 34:9 (2001), 2973–2980 | DOI

[7] Matsunaga T., Shibayama M., “Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements”, Physical Review E, 76 (2007), 030401(R), 21–27 | DOI

[8] Harkous A., Colomines G., Leroy E., Mousseau P., Deterre R., “The kinetic behavior of liquid silicone rubber: a comparison between thermal and rheological approaches based on gel point determination”, Reactive and Functional Polymers, 101 (2016), 20–27 | DOI

[9] Ferry J.D., Viscoelastic Properties of Polymers, Wiley, New York, 1961

[10] Solov'ev A.N., Kaplun A.B., Vibration method of measuring viscosity of liquids, Nauka, Novosibirsk, 1970

[11] Brailov E.S., Shkol'nik S.I., “Investigation of the kinetics and the control of vulcanization of a synthetic rubber by vibration method”, Kauchuk i rezina, 1968, no. 8, 17–19

[12] Altunina L.K., Bogoslovskiy A.V., Kozhevnikov I.S., Determination of the gel point by the method of vibration rheometer, RF Patent 2529674, 2013

[13] Bogoslovskiy A.V., Poluektov M.A., Altunina L.K., Device for measuring viscosity, RF Patent 2135980, 1997

[14] Bogoslovskiy A.V., Zhuravleva T.B., Strelets L.A., “Interference resonances in rheometry”, Teoreticheskie i prikladnye osnovy fiziko-khimicheskogo regulirovaniya svoystv neftyanykh dispersnykh system, 2001, 105–109

[15] Galkin V.M., Bogoslovskiy A.V., Volkov Yu.S., “Vibration viscosimetry and a numerical method for determining gelation dynamics”, Journal of Applied and Industrial Mathematics, 10:4 (2016), 474–481 | DOI | DOI | MR | Zbl

[16] Kaplun A.B., Meshalkin A.B., “Oscillation method of phase analysis: a precision method for integrated studying the physicochemical characteristics and the processes of crystallization and melting”, Journal of Structural Chemistry, 55:6 (2014), 1172–1179 | DOI

[17] International union of pure and applied chemistry. Compendium of chemical terminology. Gold Book. Version 2.3.3. 2014-02-24, http://goldbook.iupac.org/

[18] Schlichting H., Grenzschicht-Theorie, Verlag G. Braun, Karlsruhe, 1951 | MR

[19] Loytsyanskiy L.G., Fluid and gas mechanics, Nauka, M., 1987

[20] W.P. Mason (ed.), Physical Acoustics, Part B, v. 2, Properties of polymers and nonlinear acoustics, Academic Press, New York, 1964 | MR | Zbl