Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 105-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Simulation of transport coefficients is very important from a practical point of view. The only method for simulation of the transport coefficients of dense gases and liquids is the molecular dynamics method. However, this method is not applicable for a rarefied gas due to the need to use a great number of molecules. This paper proposes an alternative simulation method of the molecular modeling of rarefied gas transport coefficients. In this approach, the phase trajectories of considered systems are simulated stochastically. The actual values of the transport coefficients are obtained using the corresponding Green–Kubo relations by averaging over a large number of phase trajectories. To test the developed algorithm, a set of problems was solved. The binary diffusion coefficients for noble gases (Kr-Ar, Xe-Ar, Xe-Kr), the viscosity coefficients for monatomic and polyatomic gases (Ar, Kr, Ne, Xe, CH$_4$, CO, CO$_2$, O$_2$), and the diffusion coefficient for nanoparticles in rarefied gases were simulated and analyzed. It was shown that the algorithm accuracy of the order of 1–2% could be achieved when using a relatively small number of molecules. The dependence of the accuracy on the number of molecules, statistics (the number of phase trajectories), and calculation time were analyzed.
Keywords: transport processes, rarefied gas, stochastic simulation, gas nanosuspensions, nanofluids, molecular modeling.
Mots-clés : diffusion
@article{VTGU_2019_59_a10,
     author = {V. Ya. Rudyak and E. V. Lezhnev and D. N. Lyubimov},
     title = {Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {105--117},
     year = {2019},
     number = {59},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_59_a10/}
}
TY  - JOUR
AU  - V. Ya. Rudyak
AU  - E. V. Lezhnev
AU  - D. N. Lyubimov
TI  - Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 105
EP  - 117
IS  - 59
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_59_a10/
LA  - ru
ID  - VTGU_2019_59_a10
ER  - 
%0 Journal Article
%A V. Ya. Rudyak
%A E. V. Lezhnev
%A D. N. Lyubimov
%T Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 105-117
%N 59
%U http://geodesic.mathdoc.fr/item/VTGU_2019_59_a10/
%G ru
%F VTGU_2019_59_a10
V. Ya. Rudyak; E. V. Lezhnev; D. N. Lyubimov. Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 105-117. http://geodesic.mathdoc.fr/item/VTGU_2019_59_a10/

[1] V. Ya. Rudyak, A. V. Minakov, Modern problems of micro- and nanofluidics, Nauka, Novosibirsk, 2016

[2] G. E. Norman, V. V. Stegailov, “The stochastic properties of a molecular-dynamical lennard-jones system in equilibrium and nonequilibrium states”, Journal of Experimental and Theoretical Physics, 92:5 (2001), 879–886 | DOI

[3] G. E. Norman, V. V. Stegailov, “Stochastic and dynamic properties of molecular dynamics systems: simple liquids, plasma and electrolytes, polymers”, Comp. Physics Comm., 147 (2002), 678–683 | DOI | Zbl

[4] V. Ya. Rudyak, Statistical aerohydrodynamics of homogeneous and heterogeneous media, v. 2, Hydrodynamics, NGASU, Novosibirsk, 2005

[5] G. E. Norman, V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | DOI | MR | Zbl

[6] V. Ya. Rudyak, D. A. Ivanov, “Computer modeling of the dynamics of a finite number of interacting particles”, Proceedings of the Russian Higher School Academy of Sciences, 2003, no. 1, 30–38 | MR

[7] V. Ya. Rudyak, D. A. Ivanov, “Dynamical and stochastic properties of the open system of a finite number of interacting particles”, Trudy NGASU, 7:3 (30) (2004), 47–58

[8] D. W. Heerman, Computer Simulations Methods in Theoretical Physics, Springer, 1986

[9] N. V. Brilliantov, O. P. Revokatov, Molecular dynamics of disordered media, MGU, M., 1996, 158 pp.

[10] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press, Cambridge, 2005, 548 pp.

[11] V. Ya. Rudyak, E. V. Lezhnev, “Stochastic method for modeling of the rarefied gas transport coefficients”, Journal of Physics: Conference Series, 738 (2016), 012086 | DOI | MR

[12] V. Ya. Rudyak, E. V. Lezhnev, “Stochastic simulation of rarefied gas transport coefficients”, Mathematical Models and Computer Simulations, 29:3 (2017), 113–122 | Zbl

[13] V. Ya. Rudyak, E. V. Lezhnev, “Stochastic algorithm for simulating gas transport coefficients”, Journal of Computational Physics, 355 (2018), 95–103 | DOI | MR | Zbl

[14] V. Ya. Rudyak, S. L. Krasnolutskiy, “Kinetic description of nanoparticle diffusion in rarefied gas”, Doklady Physics, 46:12 (2001), 897–899 | DOI

[15] V. Ya. Rudyak, S. L. Krasnolutsky, “Diffusion of nanoparticles in a rarefied gas”, Technical Physics, 47:7 (2002), 807–813 | DOI

[16] D. Zubarev, Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York, 1974 | MR

[17] R. Kubo, M. Yokota, S. Nakajima, “Statistical-mechanical theory of irreversible processes. II. Reaction on thermal disturbances”, J. Phys. Soc. Japan, 12:11 (1957), 1203–1226 | DOI | MR

[18] H. S. Green, “Theories of transport in fluids”, J. Math. Phys., 2:2 (1961), 344–348 | DOI | MR | Zbl

[19] R. Krishna, J. A. Wesselingh, “The Maxwell-Stefan approach to mass transfer”, Chemical Engineering Science, 52:6 (1997), 861–911 | DOI

[20] V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, V. V. Egorov, “The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient”, High Temperature, 46:1 (2008), 30–39 | DOI | MR

[21] R. J. J. Van Heijningen, J. P. Harpe, J. J.M. Beenakker, “Determination of the diffusion coefficients of binary mixtures of the noble gases as a function of temperature and concentration”, Physica, 38 (1968), 1–34 | DOI

[22] J. O. Hirschfelder, Ch. F. Curtiss, R. B. Bird, Molecular theory of gases and liquids, Chapman and Hall Lim, London, 1954, 902 pp.

[23] J. H. Ferziger, H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland Publishing Company, Amsterdam-London, 1972

[24] S. V. Vallander, E. A. Nagnibeda, M. A. Rydalevskaya, Some questions of the kinetic theory of chemical reacting gas mixure, LGU, L., 1977

[25] V. M. Zhdanov, M. Ya. Alievskiy, Transport processes and relaxation in molecular gases, Nauka, M., 1989

[26] I. S. Grigor'ev, E. Z. Meylikhova, Physical values. Handbook, Energoatomizdat, M., 1991

[27] V. Ya. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, E. I. Kauppinen, “Methods of measuring the diffusion coefficient and sizes of nanoparticles in a rarefied gas”, Doklady Physics, 47:10 (2002), 758–761 | DOI