Mots-clés : diffusion
@article{VTGU_2019_59_a10,
author = {V. Ya. Rudyak and E. V. Lezhnev and D. N. Lyubimov},
title = {Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {105--117},
year = {2019},
number = {59},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_59_a10/}
}
TY - JOUR AU - V. Ya. Rudyak AU - E. V. Lezhnev AU - D. N. Lyubimov TI - Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 105 EP - 117 IS - 59 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_59_a10/ LA - ru ID - VTGU_2019_59_a10 ER -
%0 Journal Article %A V. Ya. Rudyak %A E. V. Lezhnev %A D. N. Lyubimov %T Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 105-117 %N 59 %U http://geodesic.mathdoc.fr/item/VTGU_2019_59_a10/ %G ru %F VTGU_2019_59_a10
V. Ya. Rudyak; E. V. Lezhnev; D. N. Lyubimov. Simulation modeling of the transport coefficients for rarefied gases and gas nanosuspensions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 105-117. http://geodesic.mathdoc.fr/item/VTGU_2019_59_a10/
[1] V. Ya. Rudyak, A. V. Minakov, Modern problems of micro- and nanofluidics, Nauka, Novosibirsk, 2016
[2] G. E. Norman, V. V. Stegailov, “The stochastic properties of a molecular-dynamical lennard-jones system in equilibrium and nonequilibrium states”, Journal of Experimental and Theoretical Physics, 92:5 (2001), 879–886 | DOI
[3] G. E. Norman, V. V. Stegailov, “Stochastic and dynamic properties of molecular dynamics systems: simple liquids, plasma and electrolytes, polymers”, Comp. Physics Comm., 147 (2002), 678–683 | DOI | Zbl
[4] V. Ya. Rudyak, Statistical aerohydrodynamics of homogeneous and heterogeneous media, v. 2, Hydrodynamics, NGASU, Novosibirsk, 2005
[5] G. E. Norman, V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | DOI | MR | Zbl
[6] V. Ya. Rudyak, D. A. Ivanov, “Computer modeling of the dynamics of a finite number of interacting particles”, Proceedings of the Russian Higher School Academy of Sciences, 2003, no. 1, 30–38 | MR
[7] V. Ya. Rudyak, D. A. Ivanov, “Dynamical and stochastic properties of the open system of a finite number of interacting particles”, Trudy NGASU, 7:3 (30) (2004), 47–58
[8] D. W. Heerman, Computer Simulations Methods in Theoretical Physics, Springer, 1986
[9] N. V. Brilliantov, O. P. Revokatov, Molecular dynamics of disordered media, MGU, M., 1996, 158 pp.
[10] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press, Cambridge, 2005, 548 pp.
[11] V. Ya. Rudyak, E. V. Lezhnev, “Stochastic method for modeling of the rarefied gas transport coefficients”, Journal of Physics: Conference Series, 738 (2016), 012086 | DOI | MR
[12] V. Ya. Rudyak, E. V. Lezhnev, “Stochastic simulation of rarefied gas transport coefficients”, Mathematical Models and Computer Simulations, 29:3 (2017), 113–122 | Zbl
[13] V. Ya. Rudyak, E. V. Lezhnev, “Stochastic algorithm for simulating gas transport coefficients”, Journal of Computational Physics, 355 (2018), 95–103 | DOI | MR | Zbl
[14] V. Ya. Rudyak, S. L. Krasnolutskiy, “Kinetic description of nanoparticle diffusion in rarefied gas”, Doklady Physics, 46:12 (2001), 897–899 | DOI
[15] V. Ya. Rudyak, S. L. Krasnolutsky, “Diffusion of nanoparticles in a rarefied gas”, Technical Physics, 47:7 (2002), 807–813 | DOI
[16] D. Zubarev, Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York, 1974 | MR
[17] R. Kubo, M. Yokota, S. Nakajima, “Statistical-mechanical theory of irreversible processes. II. Reaction on thermal disturbances”, J. Phys. Soc. Japan, 12:11 (1957), 1203–1226 | DOI | MR
[18] H. S. Green, “Theories of transport in fluids”, J. Math. Phys., 2:2 (1961), 344–348 | DOI | MR | Zbl
[19] R. Krishna, J. A. Wesselingh, “The Maxwell-Stefan approach to mass transfer”, Chemical Engineering Science, 52:6 (1997), 861–911 | DOI
[20] V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, V. V. Egorov, “The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient”, High Temperature, 46:1 (2008), 30–39 | DOI | MR
[21] R. J. J. Van Heijningen, J. P. Harpe, J. J.M. Beenakker, “Determination of the diffusion coefficients of binary mixtures of the noble gases as a function of temperature and concentration”, Physica, 38 (1968), 1–34 | DOI
[22] J. O. Hirschfelder, Ch. F. Curtiss, R. B. Bird, Molecular theory of gases and liquids, Chapman and Hall Lim, London, 1954, 902 pp.
[23] J. H. Ferziger, H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland Publishing Company, Amsterdam-London, 1972
[24] S. V. Vallander, E. A. Nagnibeda, M. A. Rydalevskaya, Some questions of the kinetic theory of chemical reacting gas mixure, LGU, L., 1977
[25] V. M. Zhdanov, M. Ya. Alievskiy, Transport processes and relaxation in molecular gases, Nauka, M., 1989
[26] I. S. Grigor'ev, E. Z. Meylikhova, Physical values. Handbook, Energoatomizdat, M., 1991
[27] V. Ya. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, E. I. Kauppinen, “Methods of measuring the diffusion coefficient and sizes of nanoparticles in a rarefied gas”, Doklady Physics, 47:10 (2002), 758–761 | DOI