@article{VTGU_2019_59_a1,
author = {A. N. Malyutina and U. K. Asanbekov},
title = {On the module of continuity of mappings with an $s$-averaged characteristic},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {11--15},
year = {2019},
number = {59},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/}
}
TY - JOUR AU - A. N. Malyutina AU - U. K. Asanbekov TI - On the module of continuity of mappings with an $s$-averaged characteristic JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 11 EP - 15 IS - 59 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/ LA - ru ID - VTGU_2019_59_a1 ER -
%0 Journal Article %A A. N. Malyutina %A U. K. Asanbekov %T On the module of continuity of mappings with an $s$-averaged characteristic %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 11-15 %N 59 %U http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/ %G ru %F VTGU_2019_59_a1
A. N. Malyutina; U. K. Asanbekov. On the module of continuity of mappings with an $s$-averaged characteristic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 11-15. http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/
[1] Sobolev S.L., Some applications of functional analysis in mathematical physics, Leningrad State University, Leningrad, 1950
[2] Nikulina N.G., Malyutina A.N., “On continuity of functions of a certain class”, Extremum problems of the theory of functions, Tomsk State University, Tomsk, 1983, 47–52
[3] Malyutina A.N., Elizarova M.A., Mappings with the s-averaged characteristic. Definition and properties, LAP Lambert Academic Publishing, 2013, 144 pp.
[4] Asanbekov U.K., Malyutina A.N., “Calculation of the modulus of the spherical ring”, Complex analysis and applications, Proceedings of the 8th Petrozavodsk International Conference, 2016, 103–106
[5] Alipova K., Elizarova M., Malyutina A., “Examples of the mappings with s-averaged characteristic”, Complex analysis and its applications, Proceedings of the 7th Petrozavodsk International Conference, 2014, 12–17
[6] Ladyzhenskaya O.A., Ural’tseva N.N., Linear and quasi-linear equations of the elliptical type, Nauka, M., 1973
[7] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1971 | MR