On the module of continuity of mappings with an $s$-averaged characteristic
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 11-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue studying analytical properties of non-homeomorphic mappings with an $s$-averaged characteristic. O. Martio proposed the theory of $\mathcal{Q}$-homeomorphisms (2001). The concept of $\mathcal{Q}$-homeomorphisms was extended to maps with branching (2004). In this paper, we study analytical properties of non-homeomorphic mappings with an $s$-averaged characteristic and consider the question of continuity of mappings with an $s$-averaged characteristic. By the well-known Sobolev theorem, a function of class $W^1_{s,loc}(R^n)$ for is equivalent to a continuous function. This property does not hold when $s. The authors presented such example for mappings with an $s$-averaged characteristic in 2016. In this paper, we generalize the result obtained earlier to a more general class of mappings with an $s$-averaged characteristic. Relevant examples are built. The purpose of this paper is to indicate the necessary conditions under which mappings from classes and subclasses of mappings with an $s$-averaged characteristic $1 will be continuous. Here, $n$ is the dimension of the space, and $s$ is the averaging parameter. We proved a theorem in which we obtain necessary conditions for the continuity of such mappings that are with the abovementioned $s$. Earlier, such a result was obtained for functions of the class $W^1_{s,loc}(R^n)$. The theorem is an analogue of the Mori lemma.
Keywords: spatial mappings with an $s$-averaged characteristic, modulus of continuity, mapping class.
@article{VTGU_2019_59_a1,
     author = {A. N. Malyutina and U. K. Asanbekov},
     title = {On the module of continuity of mappings with an $s$-averaged characteristic},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {11--15},
     year = {2019},
     number = {59},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/}
}
TY  - JOUR
AU  - A. N. Malyutina
AU  - U. K. Asanbekov
TI  - On the module of continuity of mappings with an $s$-averaged characteristic
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 11
EP  - 15
IS  - 59
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/
LA  - ru
ID  - VTGU_2019_59_a1
ER  - 
%0 Journal Article
%A A. N. Malyutina
%A U. K. Asanbekov
%T On the module of continuity of mappings with an $s$-averaged characteristic
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 11-15
%N 59
%U http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/
%G ru
%F VTGU_2019_59_a1
A. N. Malyutina; U. K. Asanbekov. On the module of continuity of mappings with an $s$-averaged characteristic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 11-15. http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/

[1] Sobolev S.L., Some applications of functional analysis in mathematical physics, Leningrad State University, Leningrad, 1950

[2] Nikulina N.G., Malyutina A.N., “On continuity of functions of a certain class”, Extremum problems of the theory of functions, Tomsk State University, Tomsk, 1983, 47–52

[3] Malyutina A.N., Elizarova M.A., Mappings with the s-averaged characteristic. Definition and properties, LAP Lambert Academic Publishing, 2013, 144 pp.

[4] Asanbekov U.K., Malyutina A.N., “Calculation of the modulus of the spherical ring”, Complex analysis and applications, Proceedings of the 8th Petrozavodsk International Conference, 2016, 103–106

[5] Alipova K., Elizarova M., Malyutina A., “Examples of the mappings with s-averaged characteristic”, Complex analysis and its applications, Proceedings of the 7th Petrozavodsk International Conference, 2014, 12–17

[6] Ladyzhenskaya O.A., Ural’tseva N.N., Linear and quasi-linear equations of the elliptical type, Nauka, M., 1973

[7] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1971 | MR