On the module of continuity of mappings with an $s$-averaged characteristic
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 11-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue studying analytical properties of non-homeomorphic mappings with an $s$-averaged characteristic. O. Martio proposed the theory of $\mathcal{Q}$-homeomorphisms (2001). The concept of $\mathcal{Q}$-homeomorphisms was extended to maps with branching (2004). In this paper, we study analytical properties of non-homeomorphic mappings with an $s$-averaged characteristic and consider the question of continuity of mappings with an $s$-averaged characteristic. By the well-known Sobolev theorem, a function of class $W^1_{s,loc}(R^n)$ for is equivalent to a continuous function. This property does not hold when $s$. The authors presented such example for mappings with an $s$-averaged characteristic in 2016.
In this paper, we generalize the result obtained earlier to a more general class of mappings with an $s$-averaged characteristic. Relevant examples are built. The purpose of this paper is to indicate the necessary conditions under which mappings from classes and subclasses of mappings with an $s$-averaged characteristic $1$ will be continuous. Here, $n$ is the dimension of the space, and $s$ is the averaging parameter. We proved a theorem in which we obtain necessary conditions for the continuity of such mappings that are with the abovementioned $s$. Earlier, such a result was obtained for functions of the class $W^1_{s,loc}(R^n)$. The theorem is an analogue of the Mori lemma.
Keywords:
spatial mappings with an $s$-averaged characteristic, modulus of continuity, mapping class.
@article{VTGU_2019_59_a1,
author = {A. N. Malyutina and U. K. Asanbekov},
title = {On the module of continuity of mappings with an $s$-averaged characteristic},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {11--15},
publisher = {mathdoc},
number = {59},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/}
}
TY - JOUR AU - A. N. Malyutina AU - U. K. Asanbekov TI - On the module of continuity of mappings with an $s$-averaged characteristic JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 11 EP - 15 IS - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/ LA - ru ID - VTGU_2019_59_a1 ER -
%0 Journal Article %A A. N. Malyutina %A U. K. Asanbekov %T On the module of continuity of mappings with an $s$-averaged characteristic %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 11-15 %N 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/ %G ru %F VTGU_2019_59_a1
A. N. Malyutina; U. K. Asanbekov. On the module of continuity of mappings with an $s$-averaged characteristic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 11-15. http://geodesic.mathdoc.fr/item/VTGU_2019_59_a1/