Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of Mg-Mn-Ce magnesium alloy
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 109-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this study, the mechanical behavior of Mg-Mn-Сe magnesium alloy was investigated experimentally. The material tested had two structural states: coarse-crystalline (commercial rolled sheet) and microstructured state. The method of cyclic groove pressing (CGP), which allows processing of flat samples, is used to grind the material grain structure. The paper presents a description of the CGP and the results of investigation of the material microstructure at asreceived state and after three processing cycles. The tensile tests were carried out under quasistatic conditions. Analysis of the grained structure performed using the electron and optical microscopy methods showed that the material treatment up to the deformation degree of 3.5 by CGP method made it possible to obtain the blanks with a fined structure whose grain size distribution was in the range of 0.5–5 $\mu$m with average grain size of 2.2 $\mu$m. The uniaxial tensile tests were carried out at a strain rate of 10s$^{-1}$ at room temperature in order to assess the influence of structural modifications on the mechanical behavior. It was shown that the mechanical characteristics of material improved, and the yield stress and tensile strength increased by 30% and 17%, respectively. The grain structure changes were found to contribute to the activation of additional slip systems in the HCP lattice which enhanced the ultimate deformation to failure.
Keywords: magnesium alloys, severe plastic deformation, cyclic groove pressing, mechanical properties.
Mots-clés : microstructure
@article{VTGU_2019_58_a8,
     author = {E. N. Moskvichev and V. A. Skripnyak and V. V. Karakulov and D. V. Lychagin},
     title = {Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of {Mg-Mn-Ce} magnesium alloy},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {109--118},
     year = {2019},
     number = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a8/}
}
TY  - JOUR
AU  - E. N. Moskvichev
AU  - V. A. Skripnyak
AU  - V. V. Karakulov
AU  - D. V. Lychagin
TI  - Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of Mg-Mn-Ce magnesium alloy
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 109
EP  - 118
IS  - 58
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a8/
LA  - ru
ID  - VTGU_2019_58_a8
ER  - 
%0 Journal Article
%A E. N. Moskvichev
%A V. A. Skripnyak
%A V. V. Karakulov
%A D. V. Lychagin
%T Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of Mg-Mn-Ce magnesium alloy
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 109-118
%N 58
%U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a8/
%G ru
%F VTGU_2019_58_a8
E. N. Moskvichev; V. A. Skripnyak; V. V. Karakulov; D. V. Lychagin. Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of Mg-Mn-Ce magnesium alloy. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 109-118. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a8/

[1] A. P. Khrustalyov, S. A. Vorozhtsov, I. A. Zhukov, V. V. Promakhov, V. K. Dammer, A. B. Vorozhtsov, Russian Physics Journal, 59:12 (2017), 2183–2185 | DOI

[2] S. Vorozhtsov, A. Khrustalyov, M. Khmeleva, I. Zhukov, “Structure and deformation characteristics in magnesium alloy ZK51A reinforced with AlN nanoparticles”, AIP Conf. Proc., 1772, 2016, 030004, 6 pp. | DOI

[3] R. Z. Valiev, T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement”, Progress in Materials Science, 51:7 (2006), 881–981 | DOI

[4] M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, “The use of severe plastic deformation for microstructural control”, Materials Science and Engineering A, 324:1–2 (2002), 82–89 | DOI

[5] R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, “Paradox of strength and ductility in metals processed by severe plastic deformation”, J. Materials Research, 17:1 (2002), 5–8 | DOI | MR

[6] V. A. Krasnoveikin, A. A. Kozulin, V. A. Skripnyak, “Detection of structural changes and mechanical properties of light alloys after severe plastic deformation”, Journal of Physics: Conference Series, 919 (2017), 012012 | DOI

[7] M. R. Jandaghi, H. Pouraliakbar, “Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed Aluminum-Manganese-Silicon alloy”, Materials Science and Engineering A, 679 (2017), 493–503 | DOI

[8] K. S. Fong, A. Danno, M. J. Tan, B. W. Chua, “Tensile flow behavior of AZ31 magnesium alloy processed by severe plastic deformation and post-annealing at moderately high temperatures”, J. Materials Processing Technology, 246 (2017), 235–244 | DOI

[9] A. K. Gupta, T. S. Maddukuri, S. K. Singh, “Constrained groove pressing for sheet metal processing”, Progress in Materials Science, 84 (2016), 403–462 | DOI

[10] E. N. Moskvichev, V. A. Skripnyak, V. V. Skripnyak, A. A. Kozulin, D. V. Lychagin, “Influence of structure to plastic deformation resistance of aluminium alloy 1560 after groove pressing treatment”, Letters on Materials, 6:2 (2016), 141–145 | DOI

[11] E. Moskvichev, A. Kozulin, V. Krasnoveikin, V. Skripnyak, “Numerical simulation of deformation behavior of aluminum alloy sheets under processing by groove pressing method”, MATEC Web of Conferences, 143, 01011 | DOI

[12] Q. Wang, J. Song, B. Jiang, A. Tang, Y. Chai, T. Yang, G. Huang, F. Pan, “An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion”, Materials Science and Engineering A, 720 (2018), 85–97 | DOI

[13] T. Han, G. Huang, Q. Deng, G. Wang, B. Jiang, A. Tang, Y. Zhu, F. Pan, “Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding”, J. Alloys and Compounds, 745 (2018), 599–608 | DOI

[14] A. A. Kozulyn, V. A. Skripnyak, V. A. Krasnoveikin, V. V. Skripnyak, A. K. Karavatskii, “An investigation of physico-mechanical properties of ultrafine-grained magnesium alloys subjected to severe plastic deformation”, Russian Physics Journal, 57:9 (2015), 1261–1267 | DOI

[15] Q. Yang, B. Jiang, W. Jiang, S. Luo, F. Pan, “Evolution of microstructure and mechanical properties of Mg–Mn–Ce alloys under hot extrusion”, Materials Science and Engineering A, 628 (2015), 143–148 | DOI

[16] Q. Huo, Z. Xiao, X. Yang, D. Ando, Y. Sutou, J. Koike, “Enhanced fatigue properties of cast AZ80 Mg alloy processed by cyclic torsion and low-temperature annealing”, Materials Science and Engineering A, 696 (2017), 52–59 | DOI

[17] Q. Yang, B. Jiang, X. Li, H. Dong, W. Liu, F. Pan, “Microstructure and mechanical behavior of the Mg–Mn–Ce magnesium alloy sheets”, J. Magnesium and Alloys, 2:1 (2014), 8–12 | DOI | MR | Zbl

[18] C. H. Cáceres, A. H. Blake, “On the strain hardening behaviour of magnesium at room temperature”, Materials Science and Engineering A, 462:1–2 (2007), 193–196 | DOI

[19] L. Chen, F. Yuan, P. Jiang, J. Xie, X. Wu, “Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation”, Materials Science and Engineering A, 694 (2017), 98–109 | DOI

[20] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, “The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys”, Acta Materialia, 51:7 (2003), 2055–2065 | DOI

[21] H. Q. Ang, T. B. Abbott, S. Zhu, M. A. Easton, “Anelasticity of die-cast magnesium-aluminium based alloys under different strain rates”, Materials Science and Engineering A, 707 (2017), 101–109 | DOI

[22] N. A. Koneva, D. V. Lychagin, L. T. Trishkina, E. V. Kozlov, “Types of dislocation sub-structures and stages of stress-strain curves of FCC alloys”, Strength of Metals and Alloys, Proceedings of the 7th International Conference, v. 1, Pergamon Press, NY, 1985, 21–26 | DOI

[23] E. V. Kozlov, N. A. Koneva, D. V. Lychagin, L. I. Trishkina, “Role of internal stress fields at various stages of strain hardening”, Physics of Metals and Metallography, 90:1 (2000), S59–S67

[24] N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, E. V. Kozlov, “Parameters of dislocation structures and factors determining flow stress at stages III and IV”, Strength of metals and alloys, Proc. of VIII International conference, v. 1, Pergamon Press, New York, 1988, 385–390 | DOI