Mots-clés : microstructure
@article{VTGU_2019_58_a8,
author = {E. N. Moskvichev and V. A. Skripnyak and V. V. Karakulov and D. V. Lychagin},
title = {Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of {Mg-Mn-Ce} magnesium alloy},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {109--118},
year = {2019},
number = {58},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a8/}
}
TY - JOUR AU - E. N. Moskvichev AU - V. A. Skripnyak AU - V. V. Karakulov AU - D. V. Lychagin TI - Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of Mg-Mn-Ce magnesium alloy JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 109 EP - 118 IS - 58 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a8/ LA - ru ID - VTGU_2019_58_a8 ER -
%0 Journal Article %A E. N. Moskvichev %A V. A. Skripnyak %A V. V. Karakulov %A D. V. Lychagin %T Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of Mg-Mn-Ce magnesium alloy %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 109-118 %N 58 %U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a8/ %G ru %F VTGU_2019_58_a8
E. N. Moskvichev; V. A. Skripnyak; V. V. Karakulov; D. V. Lychagin. Impact of the microstructure changes under cyclic groove pressing on the mechanical behavior of Mg-Mn-Ce magnesium alloy. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 109-118. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a8/
[1] A. P. Khrustalyov, S. A. Vorozhtsov, I. A. Zhukov, V. V. Promakhov, V. K. Dammer, A. B. Vorozhtsov, Russian Physics Journal, 59:12 (2017), 2183–2185 | DOI
[2] S. Vorozhtsov, A. Khrustalyov, M. Khmeleva, I. Zhukov, “Structure and deformation characteristics in magnesium alloy ZK51A reinforced with AlN nanoparticles”, AIP Conf. Proc., 1772, 2016, 030004, 6 pp. | DOI
[3] R. Z. Valiev, T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement”, Progress in Materials Science, 51:7 (2006), 881–981 | DOI
[4] M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, “The use of severe plastic deformation for microstructural control”, Materials Science and Engineering A, 324:1–2 (2002), 82–89 | DOI
[5] R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, “Paradox of strength and ductility in metals processed by severe plastic deformation”, J. Materials Research, 17:1 (2002), 5–8 | DOI | MR
[6] V. A. Krasnoveikin, A. A. Kozulin, V. A. Skripnyak, “Detection of structural changes and mechanical properties of light alloys after severe plastic deformation”, Journal of Physics: Conference Series, 919 (2017), 012012 | DOI
[7] M. R. Jandaghi, H. Pouraliakbar, “Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed Aluminum-Manganese-Silicon alloy”, Materials Science and Engineering A, 679 (2017), 493–503 | DOI
[8] K. S. Fong, A. Danno, M. J. Tan, B. W. Chua, “Tensile flow behavior of AZ31 magnesium alloy processed by severe plastic deformation and post-annealing at moderately high temperatures”, J. Materials Processing Technology, 246 (2017), 235–244 | DOI
[9] A. K. Gupta, T. S. Maddukuri, S. K. Singh, “Constrained groove pressing for sheet metal processing”, Progress in Materials Science, 84 (2016), 403–462 | DOI
[10] E. N. Moskvichev, V. A. Skripnyak, V. V. Skripnyak, A. A. Kozulin, D. V. Lychagin, “Influence of structure to plastic deformation resistance of aluminium alloy 1560 after groove pressing treatment”, Letters on Materials, 6:2 (2016), 141–145 | DOI
[11] E. Moskvichev, A. Kozulin, V. Krasnoveikin, V. Skripnyak, “Numerical simulation of deformation behavior of aluminum alloy sheets under processing by groove pressing method”, MATEC Web of Conferences, 143, 01011 | DOI
[12] Q. Wang, J. Song, B. Jiang, A. Tang, Y. Chai, T. Yang, G. Huang, F. Pan, “An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion”, Materials Science and Engineering A, 720 (2018), 85–97 | DOI
[13] T. Han, G. Huang, Q. Deng, G. Wang, B. Jiang, A. Tang, Y. Zhu, F. Pan, “Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding”, J. Alloys and Compounds, 745 (2018), 599–608 | DOI
[14] A. A. Kozulyn, V. A. Skripnyak, V. A. Krasnoveikin, V. V. Skripnyak, A. K. Karavatskii, “An investigation of physico-mechanical properties of ultrafine-grained magnesium alloys subjected to severe plastic deformation”, Russian Physics Journal, 57:9 (2015), 1261–1267 | DOI
[15] Q. Yang, B. Jiang, W. Jiang, S. Luo, F. Pan, “Evolution of microstructure and mechanical properties of Mg–Mn–Ce alloys under hot extrusion”, Materials Science and Engineering A, 628 (2015), 143–148 | DOI
[16] Q. Huo, Z. Xiao, X. Yang, D. Ando, Y. Sutou, J. Koike, “Enhanced fatigue properties of cast AZ80 Mg alloy processed by cyclic torsion and low-temperature annealing”, Materials Science and Engineering A, 696 (2017), 52–59 | DOI
[17] Q. Yang, B. Jiang, X. Li, H. Dong, W. Liu, F. Pan, “Microstructure and mechanical behavior of the Mg–Mn–Ce magnesium alloy sheets”, J. Magnesium and Alloys, 2:1 (2014), 8–12 | DOI | MR | Zbl
[18] C. H. Cáceres, A. H. Blake, “On the strain hardening behaviour of magnesium at room temperature”, Materials Science and Engineering A, 462:1–2 (2007), 193–196 | DOI
[19] L. Chen, F. Yuan, P. Jiang, J. Xie, X. Wu, “Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation”, Materials Science and Engineering A, 694 (2017), 98–109 | DOI
[20] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, “The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys”, Acta Materialia, 51:7 (2003), 2055–2065 | DOI
[21] H. Q. Ang, T. B. Abbott, S. Zhu, M. A. Easton, “Anelasticity of die-cast magnesium-aluminium based alloys under different strain rates”, Materials Science and Engineering A, 707 (2017), 101–109 | DOI
[22] N. A. Koneva, D. V. Lychagin, L. T. Trishkina, E. V. Kozlov, “Types of dislocation sub-structures and stages of stress-strain curves of FCC alloys”, Strength of Metals and Alloys, Proceedings of the 7th International Conference, v. 1, Pergamon Press, NY, 1985, 21–26 | DOI
[23] E. V. Kozlov, N. A. Koneva, D. V. Lychagin, L. I. Trishkina, “Role of internal stress fields at various stages of strain hardening”, Physics of Metals and Metallography, 90:1 (2000), S59–S67
[24] N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, E. V. Kozlov, “Parameters of dislocation structures and factors determining flow stress at stages III and IV”, Strength of metals and alloys, Proc. of VIII International conference, v. 1, Pergamon Press, New York, 1988, 385–390 | DOI