Numerical modeling of the deformation and fracture of a porous alumina ceramics at mesoscale
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 99-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The deformation and fracture of the mesovolumes of porous alumina ceramics during uniaxial tension were numerically simulated. The porous structure of the mesovolumes was obtained from the electron microscopy data and taken into account explicitly in the modeling process. The porosity of the mesovolumes was equal to 33, 26, and 17 %. Three different computer models of the mesovolumes of the same porosity were taken for each considered value of porosity. The modeling was implemented using the finite-difference method in a two-dimensional statement under plane-strain conditions. The constitutive equations accounting for damage accumulation which leads to a degradation of elastic properties were adopted. The equation defining damage accumulation kinetics was based on the calculation of effective stress of the Drucker–Prager material model with consideration for a stress state type (the Lode parameter). The mesoscopic fracture was described using the critical damage criterion. After meeting the fracture criterion, the stresses were set equal to zero, and the material ceased to resist tension but not compression. Based on the calculated results, the effect of the porous ceramic structure on the local fracture characteristics in the mesovolumes of material as well as on the macroscopic deformation diagram was analyzed. The presence of strong stress concentrators in the mesovolumes determined crack's nucleation cite and affected their propagation within the modeled mesovolumes. The calculated effective elastic and strength characteristics of materials are in a good agreement with experimental data.
Keywords: numerical modeling, porous ceramics, damage, mesoscale, effective properties.
Mots-clés : fracture
@article{VTGU_2019_58_a7,
     author = {V. A. Mikushina and I. Yu. Smolin},
     title = {Numerical modeling of the deformation and fracture of a porous alumina ceramics at mesoscale},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {99--108},
     year = {2019},
     number = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a7/}
}
TY  - JOUR
AU  - V. A. Mikushina
AU  - I. Yu. Smolin
TI  - Numerical modeling of the deformation and fracture of a porous alumina ceramics at mesoscale
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 99
EP  - 108
IS  - 58
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a7/
LA  - ru
ID  - VTGU_2019_58_a7
ER  - 
%0 Journal Article
%A V. A. Mikushina
%A I. Yu. Smolin
%T Numerical modeling of the deformation and fracture of a porous alumina ceramics at mesoscale
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 99-108
%N 58
%U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a7/
%G ru
%F VTGU_2019_58_a7
V. A. Mikushina; I. Yu. Smolin. Numerical modeling of the deformation and fracture of a porous alumina ceramics at mesoscale. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 99-108. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a7/

[1] A. N. Mitroshin, D. A. Kosmynin, “Ceramics as a material of choice in endoprosthesis replacement of knee joints”, University proceedings. Volga region. Medical sciences, 2016, no. 1 (37), 98–110

[2] E. S. Lukin, N. A. Makarov, A. I. Kozlov et al, “Novel oxide ceramics and fields of its application”, Composite materials constructions, 2007, no. 1, 3–13

[3] N. L. Savchenko, I. N. Sevostyanova, T. Yu. Sablina, L. Gomze, S. N. Kulkov, “The influence of porosity on the elasticity and strength of alumina and zirconia ceramics”, AIP Conf. Proc., 1623 (2014), 547–550 | DOI

[4] V. A. Mikushina, I. Yu. Smolin, “Simulation of deformation and failure of porous ceramics using different fracture criteria”, Proceedings of Tomsk State University. Physical and Mathematical Series, 302, 2018, 188–192

[5] S. Meille, M. Lombardi, J. Chevalier, L. Montanaro, “Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior”, J. Eur. Ceram. Soc., 32 (2012), 3959–3967 | DOI

[6] V. Le Corre, N. Brusselle-Dupend, M. Moreaud, “Numerical modeling of the effective ductile damage of macroporous alumina”, Mech. Mater., 114 (2017), 161–171 | DOI

[7] A. Yu. Smolin, N. V. Roman, Ig. S. Konovalenko, G. M. Eremina, S. P. Buyakova, S. G. Psakhie, “3D simulation of dependence of mechanical properties of porous ceramics on porosity”, Eng. Fract. Mech., 130 (2014), 53–64 | DOI

[8] V. A. Mikushina, I. Yu. Smolin, Yu. N. Sidorenko, “Numerical modeling and prediction of mechanical properties of ceramic composite”, J. Phys.: Conf. Ser., 919 (2017), 012013, 5 pp. | DOI

[9] I. Yu. Smolin, P. V. Makarov, M. O. Eremin, K. S. Matyko, “Numerical simulation of mesomechanical behavior of porous brittle materials”, Procedia Structural Integrity, 2 (2016), 3353–3360 | DOI

[10] V. A. Romanova, E. Soppa, S. Schmauder, R. R. Balokhonov, “Meso-mechanical analysis of the elasto-plastic behavior of a 3D composite-structure under tension”, Comput. Mech., 36 (2005), 475–483 | DOI | Zbl

[11] A. V. Panin, V. A. Romanova, R. R. Balokhonov, O. B. Perevalova, E. A. Sinyakova, O. S. Emelyanova, M. V. Leontieva-Smirnova, N. I. Karpenko, “Mesoscopic surface folding in EK-181 steel polycrystals under uniaxial tension”, Phys. Mesomech., 15 (2012), 94–103 | DOI

[12] P. S. Volegov, D. S. Gribov, P. V. Trusov, “Damage and fracture: Classical continuum theories”, Physical Mesomechanics, 20 (2017), 157–173 | DOI

[13] A. S. Kulkov, I. Yu. Smolin, V. A. Mikushina, “Investigation of mechanical response of Al$_2$O$_3$ ceramic specimens to loading with consideration for their structural features”, AIP Conference Proceedings, 2051 (2018), 020162, 4 pp. | DOI

[14] Properties: Alumina-Aluminium Oxide – Al$_2$O$_3$ – A Refractory Ceramic Oxide, (data obrascheniya: 13.12.2018) https://www.azom.com/properties.aspx?ArticleID=52

[15] V. E. Vil'deman, Yu. V. Sokolkin, A. A. Tashkinov, Mechanics of inelastic deformation and failure of composite materials, Nauka, M., 1997 | MR

[16] I. Yu. Smolin, M. O. Eremin, P. V. Makarov, S. P. Buyakova, S. N. Kulkov, E. P. Evtushenko, “Numerical modelling of mechanical behaviour of model brittle porous materials at mesoscale”, Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 5 (25), 78–90

[17] M. O. Eremin, Physical Mesomechanics, 19:4 (2016), 452–458 | DOI

[18] I. Yu. Smolin, P. V. Makarov, A. S. Kulkov, M. O. Eremin, R. A. Bakeev, “Blow-up modes in fracture of rock samples and earth's crust elements”, Physical Mesomechanics, 21:4 (2018), 297–304 | DOI

[19] M. L. Wilkins, Computer Simulation of Dynamic Phenomena, Springer-Verlag, Berlin, 1999, 246 pp. | MR | Zbl