@article{VTGU_2019_58_a4,
author = {E. I. Borzenko and K. E. Ryltseva and G. R. Shrager},
title = {Numerical investigation of {non-Newtonian} fluid flow through a pipe sudden contraction},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {56--70},
year = {2019},
number = {58},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a4/}
}
TY - JOUR AU - E. I. Borzenko AU - K. E. Ryltseva AU - G. R. Shrager TI - Numerical investigation of non-Newtonian fluid flow through a pipe sudden contraction JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 56 EP - 70 IS - 58 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a4/ LA - ru ID - VTGU_2019_58_a4 ER -
%0 Journal Article %A E. I. Borzenko %A K. E. Ryltseva %A G. R. Shrager %T Numerical investigation of non-Newtonian fluid flow through a pipe sudden contraction %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 56-70 %N 58 %U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a4/ %G ru %F VTGU_2019_58_a4
E. I. Borzenko; K. E. Ryltseva; G. R. Shrager. Numerical investigation of non-Newtonian fluid flow through a pipe sudden contraction. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 56-70. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a4/
[1] G. Astarita, G. Greco, “Excess pressure drop in laminar flow through sudden contraction. NonNewtonian liquids”, Industrial Engineering Chemistry Fundamentals, 7:4 (1968), 595–598 | DOI
[2] A. V. Rama Murthy, D. V. Boger, “Developing velocity profiles on the downstream side of a contraction for inelastic polymer solutions”, Transactions of the Society of Rheology, 15:4 (1971), 709–730 | DOI
[3] J. Kestin, M. Sokolov, W. Wakeham, “Theory of capillary viscometers”, Applied Scientific Research, 27:1 (1973), 241–264 | DOI
[4] K. Walters, M. F. Webster, “The distinctive CFD challenges of computational rheology”, Int. J. Numer. Meth. Fluids, 43 (2003), 577–596 | DOI | MR | Zbl
[5] E. Mitsoulis, J. Vlachopoulos, “Effect of Reynolds number in laminar flow through a sudden planar contraction”, AlChE Journal, 31:10 (1985), 1736–1739 | DOI
[6] Huaxiong Huang, B. R. Seymour, “A finite difference method for flow in a constricted channel”, Computers Fluids, 24:2 (1995), 153–160 | DOI | Zbl
[7] X. L. Luo, “A control volume approach for integral viscoelastic models and its application to contraction flow of polymer melts”, J. Non-Newtonian Fluid Mech., 64:2–3 (1996), 173–189 | DOI
[8] M. A. Alves, F. T. Pinho, P. J. Oliveira, “Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows”, J. Non-Newtonian Fluid Mech., 93 (2000), 287–314 | DOI | Zbl
[9] S. C. R. Dennis, F. T. Smith, “Steady flow through a channel with a symmetrical constriction in the form of a step”, Proceedings of the Royal Society of London A, 372 (1980), 393–414 | DOI | MR | Zbl
[10] T. P. Chiang, T. W.H. Sheu, R. R. Hwang, “Numerical studies of a three-dimensional flow in suddenly contracted channels”, Physics of Fluids, 14:5 (2002), 1601–1616 | DOI
[11] F. Lee Keegan, Experimental investigation into non-Newtonian fluid flow through gradual contraction geometries, Thesis, University of Liverpool, 2009, 160 pp.
[12] E. I. Borzenko, K. E. Ryltseva, O. Yu. Frolov, G. R. Shrager, “Calculation of the local resistance coefficient of viscous incombressible fluid flow in a pipe with sudden contraction”, Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 48, 36–48 | DOI | MR
[13] M. Gupta, C. A. Hieber, K. K. Wang, “Entrance effects for power-law fluid”, Polymer Engineering and Science, 34:3 (1994), 209–212 | DOI
[14] V. P. Tregubov, N. K. Zhukov, “Computer simulation of the blood strea with availability of vessel pathologies”, Russian Journal of Biomechanics, 21:2 (2017), 201–210 | DOI
[15] V. G. Pienaar, Viscous flow through sudden contractions, Dissertation, Cape Peninsula University of Technology, 2004, 198 pp.
[16] S. K. Godunov, V. S. Ryabenkiy, Difference Schemes, Nauka, M., 1977 | MR
[17] A. A. Samarskiy, Introduction into the theory of difference schemes, Nauka, M., 1971
[18] G. R. Shrager, A. N. Kozlobrodov, V. A. Yakutenok, Fluid Dynamic Simulations in Polymer Processing, Tomsk Univ. Publ., Tomsk, 1999
[19] I. E. Idel'chik, Handbook of Hydraulic Resistance, Israel Program for Scientific Translations, Jerusalem, 1966
[20] C. Tiu, D. V. Boger, A. L. Halmos, “Generalized method for predicting loss coefficients in entrance region flows for inelastic fluids”, The Chemical Engineering Journal, 4:2 (1972), 113–117 | DOI
[21] N. E. Kochin, I. A. Kibel', N. V. Roze, Theoretical Hydromechanics, English translation of 5th Russian ed., Wiley, New York, 1964 | MR | Zbl
[22] S. L.D. Kfuri, J. Q. Silva, E. J. Soares, R. L. Thompson, “Friction losses for power-law and viscoplastic materials in an entrance of a tube and an abrupt contraction”, J. Petroleum Science and Engineering, 76:3–4 (2011), 224–235 | DOI
[23] M. E. Kim-E, R. A. Brown, R. C. Armstrong, “The roles of inertia and shear-thinning in flow of an inelastic liquid through an axisymmetric sudden contraction”, J. Non-Newtonian Fluid Mechanics, 13 (1983), 341–363 | DOI
[24] S. L.D. Kfuri, E. J. Soares, R. L. Thompson, R. N. Siqueira, “Friction coefficients for Bingham and power-law fluids in abrupt contractions and expansions”, J. Fluids Engineering, 139:2 (2017), 1–8 | DOI | MR