Left-invariant almost para-Hermitian structures on some six-dimensional nilpotent Lie groups
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 41-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			As is well known, there are $34$ classes of isomorphic simply connected six-dimensional nilpotent Lie groups. Of these, only $26$ classes admit left-invariant symplectic structures and only $18$ classes admit left-invariant complex structures. There exist five six-dimensional nilpotent Lie groups $G$, which do not admit neither symplectic, nor complex structures and, therefore, can be neither almost pseudo-Kählerian, nor Hermitian. It is the Lie groups that are studied in this work. The aim of the paper is to define new left-invariant geometric structures on the Lie groups. If the left-invariant $2$-form $\omega$ on such a Lie group is closed, then it is degenerate. Weakening the closedness requirement for left-invariant $2$-forms $\omega$, stable $2$-forms $\omega$ are obtained. Their exterior differential $d\omega$ is also stable in Hitchin sense. Therefore, the pair $(\omega, d\omega)$ defines either an almost Hermitian or almost para-Hermitian structure on the group $G$. The corresponding pseudo-Riemannian metrics are Einstein for four of the five Lie groups under consideration. This gives new examples of multiparameter families of left-invariant Einstein pseudo-Riemannian metrics on six-dimensional nilmanifolds. On each of the Lie groups under consideration, compatible and normalized pairs of left-invariant forms $(\omega,\rho)$, where $\rho=d\omega$, are obtained. They define semi-flat structures. The Hitchin flow on $G\times I$ is studied to construct a pseudo-Riemannian metric on $G\times I$ with a holonomy group from $G_2^*$ and it is shown that there is nots solution in this class of left-invariant half-plane structures $(\omega,\rho)$. For structures $(\omega,\rho)$, only the $3$-form closure property $\varphi=\omega \wedge dt+d\omega$ on $G\times I$ holds.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nilmanifolds, six-dimensional nilpotent Lie algebras, left-invariant para-complex structures, Einstein manifolds, half-flat structures.
                    
                  
                
                
                @article{VTGU_2019_58_a3,
     author = {N. K. Smolentsev},
     title = {Left-invariant almost {para-Hermitian} structures on some six-dimensional nilpotent {Lie} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {41--55},
     publisher = {mathdoc},
     number = {58},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a3/}
}
                      
                      
                    TY - JOUR AU - N. K. Smolentsev TI - Left-invariant almost para-Hermitian structures on some six-dimensional nilpotent Lie groups JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 41 EP - 55 IS - 58 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a3/ LA - ru ID - VTGU_2019_58_a3 ER -
%0 Journal Article %A N. K. Smolentsev %T Left-invariant almost para-Hermitian structures on some six-dimensional nilpotent Lie groups %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 41-55 %N 58 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a3/ %G ru %F VTGU_2019_58_a3
N. K. Smolentsev. Left-invariant almost para-Hermitian structures on some six-dimensional nilpotent Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 41-55. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a3/
