Left-invariant almost para-Hermitian structures on some six-dimensional nilpotent Lie groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 41-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is well known, there are $34$ classes of isomorphic simply connected six-dimensional nilpotent Lie groups. Of these, only $26$ classes admit left-invariant symplectic structures and only $18$ classes admit left-invariant complex structures. There exist five six-dimensional nilpotent Lie groups $G$, which do not admit neither symplectic, nor complex structures and, therefore, can be neither almost pseudo-Kählerian, nor Hermitian. It is the Lie groups that are studied in this work. The aim of the paper is to define new left-invariant geometric structures on the Lie groups. If the left-invariant $2$-form $\omega$ on such a Lie group is closed, then it is degenerate. Weakening the closedness requirement for left-invariant $2$-forms $\omega$, stable $2$-forms $\omega$ are obtained. Their exterior differential $d\omega$ is also stable in Hitchin sense. Therefore, the pair $(\omega, d\omega)$ defines either an almost Hermitian or almost para-Hermitian structure on the group $G$. The corresponding pseudo-Riemannian metrics are Einstein for four of the five Lie groups under consideration. This gives new examples of multiparameter families of left-invariant Einstein pseudo-Riemannian metrics on six-dimensional nilmanifolds. On each of the Lie groups under consideration, compatible and normalized pairs of left-invariant forms $(\omega,\rho)$, where $\rho=d\omega$, are obtained. They define semi-flat structures. The Hitchin flow on $G\times I$ is studied to construct a pseudo-Riemannian metric on $G\times I$ with a holonomy group from $G_2^*$ and it is shown that there is nots solution in this class of left-invariant half-plane structures $(\omega,\rho)$. For structures $(\omega,\rho)$, only the $3$-form closure property $\varphi=\omega \wedge dt+d\omega$ on $G\times I$ holds.
Keywords: nilmanifolds, six-dimensional nilpotent Lie algebras, left-invariant para-complex structures, Einstein manifolds, half-flat structures.
@article{VTGU_2019_58_a3,
     author = {N. K. Smolentsev},
     title = {Left-invariant almost {para-Hermitian} structures on some six-dimensional nilpotent {Lie} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {41--55},
     year = {2019},
     number = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a3/}
}
TY  - JOUR
AU  - N. K. Smolentsev
TI  - Left-invariant almost para-Hermitian structures on some six-dimensional nilpotent Lie groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 41
EP  - 55
IS  - 58
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a3/
LA  - ru
ID  - VTGU_2019_58_a3
ER  - 
%0 Journal Article
%A N. K. Smolentsev
%T Left-invariant almost para-Hermitian structures on some six-dimensional nilpotent Lie groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 41-55
%N 58
%U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a3/
%G ru
%F VTGU_2019_58_a3
N. K. Smolentsev. Left-invariant almost para-Hermitian structures on some six-dimensional nilpotent Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 41-55. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a3/

[1] S. Salamon, “Complex structures on nilpotent Lie algebras”, J. Pure Appl. Algebra, 157 (2001), 311–333 | DOI | MR | Zbl

[2] M. Goze, Y. Khakimdjanov, A. Medina, “Symplectic or contact structures on Lie groups”, Diff. Geom. Appl., 21:1 (2004), 41–54 | DOI | MR | Zbl

[3] C. Benson, C. S. Gordon, “Kahler and symplectic structures on nilmanifolds”, Topology, 27 (1988), 513–518 | DOI | MR | Zbl

[4] L. A. Cordero, M. Fernandez, L. Ugarte, “Pseudo-Kahler metrics on six-dimensional nilpotent Lie algebras”, J. of Geom. and Phys., 50 (2004), 115–137 | DOI | MR | Zbl

[5] Smolentsev N.K., “Canonical pseudo-Kähler metrics on six-dimensional nilpotent Lie groups”, Vestn. Kemerovsk. Gos. Univ., Ser. Mat., 2011, no. 3/1(47), 155–168 (In Russian)

[6] N. K. Smolentsev, Canonical almost pseudo-Kahler structures on six-dimensional nilpotent Lie groups, 2013, 26 pp., arXiv: 1311.4248 [math.DG] | Zbl

[7] V. Cortés, T. Leistner, L. Schäfer, F. Schulte-Hengesbach, “Half-flat structures and special holonomy”, Proc. London Math. Soc., 102:1 (2011), 113–158, arXiv: 0907.1222v1 [math.DG] | DOI | MR | Zbl

[8] N. K. Smolentsev, “Left-invariant almost para-complex Einsteinian structures on six-dimensional nilpotent Lie groups”, Science Evolution, 2:2 (2017), 88–95 | DOI | MR

[9] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 1, 2, Interscience Publ., New York–London, 1963 | MR | Zbl

[10] N. J. Hitchin, “The geometry of three-forms in six dimensions”, J. Diff. Geom., 55 (2000), 547–576 | DOI | MR | Zbl

[11] Alekseevsky D.V., Medori C., Tomassini A., “Homogeneous para-Kähler Einstein manifolds”, Russian Mathematical Surveys, 64:1 (2009), 1–43 | DOI | DOI | MR | Zbl

[12] N. Hitchin, “Stable forms and special metrics”, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), 70–89, arXiv: math/0107101v1 [math.DG] | DOI | MR | Zbl

[13] D. Conti, “Half-flat nilmanifolds”, Math. Ann., 350:1 (2011), 155–168, arXiv: 0903.1175 [math.DG] | DOI | MR | Zbl