@article{VTGU_2019_58_a2,
author = {O. I. Rudnitskii},
title = {Canonical system of basic invariants for unitary group $W(K_5)$},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {32--40},
year = {2019},
number = {58},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a2/}
}
O. I. Rudnitskii. Canonical system of basic invariants for unitary group $W(K_5)$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 32-40. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a2/
[1] G. C. Shephard, J. A. Todd, “Finite unitary reflection groups”, Can. J. Math., 6:2 (1954), 274–304 | DOI | MR | Zbl
[2] L. Flatto, “Basic sets of invariants for finite reflection groups”, Bull. Amer. Math. Soc., 74 (1968), 730–734 | DOI | MR | Zbl
[3] K. Iwasaki, “Basic invariants of finite reflection groups”, J. Algebra, 195:2 (1997), 538–547 | DOI | MR | Zbl
[4] N. Nakashima, H. Terao, S. Tsujie, “Canonical systems of basic invariants for unitary reflection groups”, Canad. Math. Bull., 59:3 (2016), 617–623 | DOI | MR | Zbl
[5] S. Tsujie, Construction of canonical systems of basic invariants for finite reflection groups, The thesis (doctoral), Hokkaido, 2014, 40 pp. | DOI | MR | Zbl
[6] O. I. Rudnitskii, “Canonical systems of basic invariants for symmetry groups of Hessian polyhedrons”, Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 3 (36), 73–78
[7] O. I. Rudnitskii, “Canonical systems of basic invariants for unitary groups $W(J_3(m))$, $m = 4, 5$”, Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 1 (38), 89–96
[8] O. I. Rudnitskii, A. Yu. Bochko, E. N. Rolskaya, “Canonical systems of basic invariants for primitive groups generated by reflections on the unitary plane”, Mathematics, informatics, computer science, modeling, education, Collection of papers MICMO-2018 (Simferopol, 2018), 59–71
[9] O. I. Rudnitskii, “Canonical system of basic invariants for finite primitive reflection groups of four-dimensional unitary space”, Dinamicheskie Sistemy Dynamical Systems, 9(37):1 (2019)
[10] V. Talamini, “Canonical bases of invariant polynomials for the irreducible reflection groups of types E6, E7 and E8”, J. Algebra, 503 (2018), 590–603 | DOI | MR | Zbl
[11] O. I. Rudnitskii, Algebraic surfaces with finite symmetry groups in unitary space, Thesis for the degree of Candidate of Physico-Mathematical Sciences, Minsk, 1990, 115 pp.
[12] O. I. Rudnitskii, “Some properties of the basis invariants of the unitary group W(K5)”, Journal of Mathematical Sciences, 51:5 (1990), 2570–2574 | DOI | MR
[13] O. I. Rudnitskii, “Basis invariants of the Mitchell group generated by reflections in sixdimensional unitary space”, J. Soviet Mathematics, 65:1 (1990), 1479–1482 | DOI | MR