Canonical system of basic invariants for unitary group $W(K_5)$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 32-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a finite group $G$ generated by reflections in the $n$-dimensional unitary space $U^n$, the algebra $I^G$ of all $G$-invariant polynomials $f(x_1,\dots,x_n)$ is generated by $n$ algebraically independent homogeneous polynomials $f_i\in I^G$ with $\mathrm{deg}\,f_i=m_i$ ($i=\overline{1,n}$); $m_1\leqslant m_2\leqslant\dots\leqslant m_n$ (Shephard G. C., Todd J. A.). According to Nakashima N., Terao H., and Tsujie S., system $\{f_1,\dots, f_n\}$ of basic invariants of the group $G$ is said to be canonical if it satisfies the following system of partial differential equations: $$ \overline{f}_i(\partial) f_j=0,\quad i,j=\overline{1,n}\ (i<j), $$ where the differential operator $\overline{f}_i(\partial)$ is obtained from polynomial $f_i$ if each its coefficient is replaced by the complex conjugate and each variable $x_k$ is replaced by $\frac\partial{\partial x_k}$. In the previous works, the author obtained in an explicit form canonical systems of basic invariants for all finite primitive unitary groups $G$ generated by reflections in unitary spaces of dimensional $2$, $3$, and $4$. In this paper, canonical systems of basic invariants were constructed in an explicit form for unitary groups $W(K_5)$ generated by reflections in space $U^5$.
Keywords: Unitary space, reflection, reflection groups, algebra of invariants, basic invariant, canonical system of basic invariants.
@article{VTGU_2019_58_a2,
     author = {O. I. Rudnitskii},
     title = {Canonical system of basic invariants for unitary group $W(K_5)$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {32--40},
     year = {2019},
     number = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a2/}
}
TY  - JOUR
AU  - O. I. Rudnitskii
TI  - Canonical system of basic invariants for unitary group $W(K_5)$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 32
EP  - 40
IS  - 58
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a2/
LA  - ru
ID  - VTGU_2019_58_a2
ER  - 
%0 Journal Article
%A O. I. Rudnitskii
%T Canonical system of basic invariants for unitary group $W(K_5)$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 32-40
%N 58
%U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a2/
%G ru
%F VTGU_2019_58_a2
O. I. Rudnitskii. Canonical system of basic invariants for unitary group $W(K_5)$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 32-40. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a2/

[1] G. C. Shephard, J. A. Todd, “Finite unitary reflection groups”, Can. J. Math., 6:2 (1954), 274–304 | DOI | MR | Zbl

[2] L. Flatto, “Basic sets of invariants for finite reflection groups”, Bull. Amer. Math. Soc., 74 (1968), 730–734 | DOI | MR | Zbl

[3] K. Iwasaki, “Basic invariants of finite reflection groups”, J. Algebra, 195:2 (1997), 538–547 | DOI | MR | Zbl

[4] N. Nakashima, H. Terao, S. Tsujie, “Canonical systems of basic invariants for unitary reflection groups”, Canad. Math. Bull., 59:3 (2016), 617–623 | DOI | MR | Zbl

[5] S. Tsujie, Construction of canonical systems of basic invariants for finite reflection groups, The thesis (doctoral), Hokkaido, 2014, 40 pp. | DOI | MR | Zbl

[6] O. I. Rudnitskii, “Canonical systems of basic invariants for symmetry groups of Hessian polyhedrons”, Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 3 (36), 73–78

[7] O. I. Rudnitskii, “Canonical systems of basic invariants for unitary groups $W(J_3(m))$, $m = 4, 5$”, Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 1 (38), 89–96

[8] O. I. Rudnitskii, A. Yu. Bochko, E. N. Rolskaya, “Canonical systems of basic invariants for primitive groups generated by reflections on the unitary plane”, Mathematics, informatics, computer science, modeling, education, Collection of papers MICMO-2018 (Simferopol, 2018), 59–71

[9] O. I. Rudnitskii, “Canonical system of basic invariants for finite primitive reflection groups of four-dimensional unitary space”, Dinamicheskie Sistemy Dynamical Systems, 9(37):1 (2019)

[10] V. Talamini, “Canonical bases of invariant polynomials for the irreducible reflection groups of types E6, E7 and E8”, J. Algebra, 503 (2018), 590–603 | DOI | MR | Zbl

[11] O. I. Rudnitskii, Algebraic surfaces with finite symmetry groups in unitary space, Thesis for the degree of Candidate of Physico-Mathematical Sciences, Minsk, 1990, 115 pp.

[12] O. I. Rudnitskii, “Some properties of the basis invariants of the unitary group W(K5)”, Journal of Mathematical Sciences, 51:5 (1990), 2570–2574 | DOI | MR

[13] O. I. Rudnitskii, “Basis invariants of the Mitchell group generated by reflections in sixdimensional unitary space”, J. Soviet Mathematics, 65:1 (1990), 1479–1482 | DOI | MR