Keywords: strain, polarization, ferroelectrics, ferroelastics, induced and residual parameters, irreversible process.
@article{VTGU_2019_58_a10,
author = {A. S. Skaliukh},
title = {Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {128--141},
year = {2019},
number = {58},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a10/}
}
TY - JOUR AU - A. S. Skaliukh TI - Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 128 EP - 141 IS - 58 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a10/ LA - ru ID - VTGU_2019_58_a10 ER -
%0 Journal Article %A A. S. Skaliukh %T Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 128-141 %N 58 %U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a10/ %G ru %F VTGU_2019_58_a10
A. S. Skaliukh. Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 128-141. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a10/
[1] Belokon' A.V., Skaliukh A.S., Mathematical modeling of irreversible processes of polarization, Fizmatlit, M., 2010
[2] J. E. Huber, N. A. Fleck, “Multi-axial electrical switching of a ferroelectric: theory versus experiment”, J. Mechanics and Physics of Solids, 49 (2001), 785–811 | DOI | Zbl
[3] M. Kamlah, U. Bohle, “Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior”, Int. J. Solids and Structures, 38 (2001), 605–633 | DOI | Zbl
[4] R. M. McMeeking, C. M. Landis, “A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics”, Int. J. Engineering Science, 40 (2002), 1553–1577 | DOI | MR | Zbl
[5] Landis C. M. Fully coupled, multi-axial, “symmetric constitutive laws for polycrystalline ferroelectric ceramics”, J. Mechanics and Physics of Solids, 50 (2002), 127–152 | DOI | Zbl
[6] A. Haug, V. Knoblauch, R. M. McMeeking, “Combined isotropic and kinematic hardening in phenomenological switching models for ferroelectric ceramics”, Int. J. Engineering Science, 41 (2003), 867–901 | DOI
[7] M. Elhadrouz, T. B. Zineb, E. Patoor, “Constitutive Law for Ferroelastic and Ferroelectric Piezoceramics”, J. Intelligent Material Systems and Structures, 16 (2005), 221–236 | DOI
[8] R. Muller, J. Schroder, D. C. Lupascu, “Thermodynamic consistent modelling of defects and microstructures in ferroelectrics”, GAMM-Mitt, 31:2 (2008), 133–150 | DOI | MR | Zbl
[9] J. E. Huber, N. A. Fleck, “Ferroelectric switching: a micromechanics model versus measured behaviour”, European J. Mechanics A/Solids, 23 (2004), 203–217 | DOI | Zbl
[10] M. Kamlah, A. C. Liskowsky, R. M. McMeeking, H. Balke, “Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model”, Int. J. Solids and Structures, 42 (2005), 2949–2964 | DOI | Zbl
[11] A. Haug, P. R. Onck, E. V. Giessen, “Development of inter- and intragranular stresses during switching of ferroelectric polycrystals”, Int. J. Solids and Structures, 44 (2007), 2066–2078 | DOI | Zbl
[12] I. Pane, N. A. Fleck, D. P. Chu, J. E. Huber, “The influence of mechanical constraint upon the switching of a ferroelectric memory capacitor”, European J. Mechanics A/Solids, 28 (2009), 195–201 | DOI | Zbl
[13] K. Jayabal, A. Menzel, A. Arockiarajan, S. M. Srinivasan, “Micromechanical modelling of switching phenomena in polycrystalline piezoceramics. Application of a polygonal finite element approach”, Computational Mechanics, 48:4 (2011), 421–435 | DOI | MR | Zbl
[14] L. Daniel, D. A. Hall, P. J. Withers, “A multiscale model for reversible ferroelectric behavior of polycrystalline ceramics”, Mechanics of Materials, 71 (2014), 85–100 | DOI
[15] V. I. Aleshin, A. G. Luchaninov, “Modeling of domain processes in piezoceramic materials”, Ferroelectrics, 266 (2002), 111–124 | DOI
[16] R. C. Smith, Z. Ounaies, “A Domain Wall Model for Hysteresis in Piezoelectric Materials”, J. Intelligent Material Systems and Structures, 11:1 (2000), 62–79 | DOI
[17] Osipova N.G., Semionov A.S., “Simulation of the nonlinear behavior of ferroelectric ceramics with tetragonal structure by finite-element homogenizing”, St. Petersburg Polytechnic University Journal-Physics and Mathematics, 2011, no. 4 (134), 56–64
[18] A. Skaliukh, “About Mathematical Models of Irreversible Polarization Processes of a Ferroelectric and Ferroelastic Polycrystals”, Ferroelectrics and Their Applications, ed. Husein Irzaman, IntechOpen https://www.intechopen.com/books/ferroelectrics-and-their-applications/about-mathematical-models-of-irreversible-polarization-processes-of-a-ferroelectric-and-ferroelastic | DOI