Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 128-141
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main purpose of the work is to study the functional dependences of the material physical characteristics on the residual parameters of strain and polarization for irreversible process of polarization and strain. The dissipative forces in the inequality for dissipation are presented as a sum of analytical and non-analytical parts. Expansion of the analytical parts in powers of determining parameters provides the differential equations, which, being integrated, yield the unknown functional dependences. Integration constants represent the physical modules of a depolarized state. The tensor components of expansion in powers are determined by using elastic compliance modules, piezoelectric modules, and dielectric constants of two states: thermally depolarized ceramics and ceramics polarized up to saturation. As a result, the constitutive equations for reversible parameters were obtained as linear tensor equations with material elastic, piezoelectric, and dielectric properties representing tensor functions studied above.
Mots-clés : constitutive equations
Keywords: strain, polarization, ferroelectrics, ferroelastics, induced and residual parameters, irreversible process.
@article{VTGU_2019_58_a10,
     author = {A. S. Skaliukh},
     title = {Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {128--141},
     year = {2019},
     number = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a10/}
}
TY  - JOUR
AU  - A. S. Skaliukh
TI  - Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 128
EP  - 141
IS  - 58
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a10/
LA  - ru
ID  - VTGU_2019_58_a10
ER  - 
%0 Journal Article
%A A. S. Skaliukh
%T Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 128-141
%N 58
%U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a10/
%G ru
%F VTGU_2019_58_a10
A. S. Skaliukh. Functional dependence of the physical characteristics on irreversible parameters under electromechanical action on the ferroelectric ceramics. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 128-141. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a10/

[1] Belokon' A.V., Skaliukh A.S., Mathematical modeling of irreversible processes of polarization, Fizmatlit, M., 2010

[2] J. E. Huber, N. A. Fleck, “Multi-axial electrical switching of a ferroelectric: theory versus experiment”, J. Mechanics and Physics of Solids, 49 (2001), 785–811 | DOI | Zbl

[3] M. Kamlah, U. Bohle, “Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior”, Int. J. Solids and Structures, 38 (2001), 605–633 | DOI | Zbl

[4] R. M. McMeeking, C. M. Landis, “A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics”, Int. J. Engineering Science, 40 (2002), 1553–1577 | DOI | MR | Zbl

[5] Landis C. M. Fully coupled, multi-axial, “symmetric constitutive laws for polycrystalline ferroelectric ceramics”, J. Mechanics and Physics of Solids, 50 (2002), 127–152 | DOI | Zbl

[6] A. Haug, V. Knoblauch, R. M. McMeeking, “Combined isotropic and kinematic hardening in phenomenological switching models for ferroelectric ceramics”, Int. J. Engineering Science, 41 (2003), 867–901 | DOI

[7] M. Elhadrouz, T. B. Zineb, E. Patoor, “Constitutive Law for Ferroelastic and Ferroelectric Piezoceramics”, J. Intelligent Material Systems and Structures, 16 (2005), 221–236 | DOI

[8] R. Muller, J. Schroder, D. C. Lupascu, “Thermodynamic consistent modelling of defects and microstructures in ferroelectrics”, GAMM-Mitt, 31:2 (2008), 133–150 | DOI | MR | Zbl

[9] J. E. Huber, N. A. Fleck, “Ferroelectric switching: a micromechanics model versus measured behaviour”, European J. Mechanics A/Solids, 23 (2004), 203–217 | DOI | Zbl

[10] M. Kamlah, A. C. Liskowsky, R. M. McMeeking, H. Balke, “Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model”, Int. J. Solids and Structures, 42 (2005), 2949–2964 | DOI | Zbl

[11] A. Haug, P. R. Onck, E. V. Giessen, “Development of inter- and intragranular stresses during switching of ferroelectric polycrystals”, Int. J. Solids and Structures, 44 (2007), 2066–2078 | DOI | Zbl

[12] I. Pane, N. A. Fleck, D. P. Chu, J. E. Huber, “The influence of mechanical constraint upon the switching of a ferroelectric memory capacitor”, European J. Mechanics A/Solids, 28 (2009), 195–201 | DOI | Zbl

[13] K. Jayabal, A. Menzel, A. Arockiarajan, S. M. Srinivasan, “Micromechanical modelling of switching phenomena in polycrystalline piezoceramics. Application of a polygonal finite element approach”, Computational Mechanics, 48:4 (2011), 421–435 | DOI | MR | Zbl

[14] L. Daniel, D. A. Hall, P. J. Withers, “A multiscale model for reversible ferroelectric behavior of polycrystalline ceramics”, Mechanics of Materials, 71 (2014), 85–100 | DOI

[15] V. I. Aleshin, A. G. Luchaninov, “Modeling of domain processes in piezoceramic materials”, Ferroelectrics, 266 (2002), 111–124 | DOI

[16] R. C. Smith, Z. Ounaies, “A Domain Wall Model for Hysteresis in Piezoelectric Materials”, J. Intelligent Material Systems and Structures, 11:1 (2000), 62–79 | DOI

[17] Osipova N.G., Semionov A.S., “Simulation of the nonlinear behavior of ferroelectric ceramics with tetragonal structure by finite-element homogenizing”, St. Petersburg Polytechnic University Journal-Physics and Mathematics, 2011, no. 4 (134), 56–64

[18] A. Skaliukh, “About Mathematical Models of Irreversible Polarization Processes of a Ferroelectric and Ferroelastic Polycrystals”, Ferroelectrics and Their Applications, ed. Husein Irzaman, IntechOpen https://www.intechopen.com/books/ferroelectrics-and-their-applications/about-mathematical-models-of-irreversible-polarization-processes-of-a-ferroelectric-and-ferroelastic | DOI