Improved model selection method for an adaptive estimation in semimartingale regression models
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 14-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers the problem of robust adaptive efficient estimating of a periodic function in a continuous time regression model with the dependent noises given by a general square integrable semimartingale with a conditionally Gaussian distribution. An example of such noise is the non-Gaussian Ornstein–Uhlenbeck–Levy processes. An adaptive model selection procedure, based on the improved weighted least square estimates, is proposed. Under some conditions on the noise distribution, sharp oracle inequality for the robust risk has been proved and the robust efficiency of the model selection procedure has been established. The numerical analysis results are given.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
improved non-asymptotic estimation, least squares estimates, robust quadratic risk, non-parametric regression, semimartingale noise, Ornstein–Uhlenbeck–Levy process, model selection, sharp oracle inequality, asymptotic efficiency.
                    
                    
                    
                  
                
                
                @article{VTGU_2019_58_a1,
     author = {E. A. Pchelintsev and S. M. Pergamenshchikov},
     title = {Improved model selection method for an adaptive estimation in semimartingale regression models},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {14--31},
     publisher = {mathdoc},
     number = {58},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a1/}
}
                      
                      
                    TY - JOUR AU - E. A. Pchelintsev AU - S. M. Pergamenshchikov TI - Improved model selection method for an adaptive estimation in semimartingale regression models JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 14 EP - 31 IS - 58 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a1/ LA - en ID - VTGU_2019_58_a1 ER -
%0 Journal Article %A E. A. Pchelintsev %A S. M. Pergamenshchikov %T Improved model selection method for an adaptive estimation in semimartingale regression models %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 14-31 %N 58 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a1/ %G en %F VTGU_2019_58_a1
E. A. Pchelintsev; S. M. Pergamenshchikov. Improved model selection method for an adaptive estimation in semimartingale regression models. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 14-31. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a1/
