@article{VTGU_2019_58_a1,
author = {E. A. Pchelintsev and S. M. Pergamenshchikov},
title = {Improved model selection method for an adaptive estimation in semimartingale regression models},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {14--31},
year = {2019},
number = {58},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a1/}
}
TY - JOUR AU - E. A. Pchelintsev AU - S. M. Pergamenshchikov TI - Improved model selection method for an adaptive estimation in semimartingale regression models JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 14 EP - 31 IS - 58 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a1/ LA - en ID - VTGU_2019_58_a1 ER -
%0 Journal Article %A E. A. Pchelintsev %A S. M. Pergamenshchikov %T Improved model selection method for an adaptive estimation in semimartingale regression models %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 14-31 %N 58 %U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a1/ %G en %F VTGU_2019_58_a1
E. A. Pchelintsev; S. M. Pergamenshchikov. Improved model selection method for an adaptive estimation in semimartingale regression models. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 14-31. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a1/
[1] O. E. Barndorff-Nielsen, N. Shephard, “Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial mathematics”, J. Royal Stat. Soc., 63 (2001), 167–241 | DOI | MR | Zbl
[2] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996 | MR
[3] R. Cont, P. Tankov, Financial Modelling with Jump Processes, Chapman Hall, London, 2004 | MR | Zbl
[4] D. Fourdrinier, S. Pergamenshchikov, “Improved selection model method for the regression with dependent noise”, Annals of the Institute of Statistical Mathematics, 59:3 (2007), 435–464 | DOI | MR | Zbl
[5] L. Galtchouk, S. Pergamenshchikov, “Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models”, Journal of Nonparametric Statistics, 21:1 (2009), 1–16 | DOI | MR
[6] L. Galtchouk, S. Pergamenshchikov, “Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression”, Journal of Korean Statistical Society, 38:4 (2009), 305–322 | DOI | MR | Zbl
[7] W. James, C. Stein, “Estimation with quadratic loss”, Proceedings of the Fourth Berkeley Symposium Mathematics, Statistics and Probability, v. 1, University of California Press, Berkeley, 1961, 361–380 | MR
[8] V. V. Konev, S. M. Pergamenshchikov, “Nonparametric estimation in a semimartingale regression model. Part 1. Oracle Inequalities”, Tomsk State University Journal of Mathematics and Mechanics, 2009, no. 3 (7), 23–41
[9] V. V. Konev, S. M. Pergamenshchikov, “Nonparametric estimation in a semimartingale regression model. Part 2. Robust asymptotic efficiency”, Tomsk State University Journal of Mathematics and Mechanics, 2009, no. 4 (8), 31–45
[10] V. V. Konev, S. M. Pergamenshchikov, “General model selection estimation of a periodic regression with a Gaussian noise”, Annals of the Institute of Statistical Mathematics, 62 (2010), 1083–1111 | DOI | MR | Zbl
[11] V. V. Konev, S. M. Pergamenshchikov, “Efficient robust nonparametric in a semimartingale regression model”, Annals of the Institute of Henri Poincare. Probab. and Stat., 48:4 (2012), 1217–1244 | DOI | MR | Zbl
[12] V. V. Konev, S. M. Pergamenshchikov, “Robust model selection for a semimartingale continuous time regression from discrete data”, Stochastic processes and their applications, 125 (2015), 294–326 | DOI | MR | Zbl
[13] V. Konev, S. Pergamenshchikov, E. Pchelintsev, “Estimation of a regression with the pulse type noise from discrete data”, Theory Probab. Appl., 58:3 (2014), 442–457 | DOI | MR | Zbl
[14] E. Pchelintsev, “Improved estimation in a non-Gaussian parametric regression”, Stat. Inference Stoch. Process, 16:1 (2013), 15–28 | DOI | MR | Zbl
[15] E. Pchelintsev, S. Pergamenshchikov, “Oracle inequalities for the stochastic differential equations”, Stat. Inference Stoch. Process, 21:2 (2018), 469–483 | DOI | MR | Zbl
[16] E. A. Pchelintsev, V. A. Pchelintsev, S. M. Pergamenshchikov, “Non asymptotic sharp oracle inequality for the improved model selection procedures for the adaptive nonparametric signal estimation problem”, Communications Scientific Letters of the University of Zilina, 20:1 (2018), 72–76 | MR
[17] E. Pchelintsev, S. Pergamenshchikov, Adaptive model selection method for a conditionally Gaussian semimartingale regression in continuous time, 2018, 50 pp., arXiv: 1811.05319
[18] M. A. Povzun, E. A. Pchelintsev, “Estimating parameters in a regression model with dependent noises”, Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 49, 43–51 | DOI | MR