Stress components and loading restrictions at the vertices of regular triangular and quadrangular pyramids
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 56 (2018), pp. 102-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A special point of structural element (the vertex of a polyhedron) is considered as an ordinary point of deformable body representing an infinitely small particle obtained by contracting elementary volume to a point. Using this concept, the stress state at the vertices of regular triangular and quadrangular pyramids is studied in the case of a surface loading of the lateral faces of pyramids. It is shown that the stress state at the vertices of polyhedra is fully known for any loading. This fact leads to a non-classical formulation of the problem of solid mechanics for such structural elements. The conditions for load vector components are proposed, which provide the correct problem statements within the solid mechanics. The particular cases of the loading of considered structural elements are introduced. The obtained solutions are found to be in a good agreement with known analytical results. The reported results will find application in the formulation of solid mechanics problems containing vertices (recesses) in the shape of polyhedra, in particular, when studying the interaction of the Berkovich and Vickers indenters with samples.
Keywords: polyhedron, singular points, singularity, elementary volume, non-classical problems.
@article{VTGU_2018_56_a8,
     author = {V. M. Pestrenin and I. V. Pestrenina and L. V. Landik},
     title = {Stress components and loading restrictions at the vertices of regular triangular and quadrangular pyramids},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {102--119},
     year = {2018},
     number = {56},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_56_a8/}
}
TY  - JOUR
AU  - V. M. Pestrenin
AU  - I. V. Pestrenina
AU  - L. V. Landik
TI  - Stress components and loading restrictions at the vertices of regular triangular and quadrangular pyramids
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 102
EP  - 119
IS  - 56
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_56_a8/
LA  - ru
ID  - VTGU_2018_56_a8
ER  - 
%0 Journal Article
%A V. M. Pestrenin
%A I. V. Pestrenina
%A L. V. Landik
%T Stress components and loading restrictions at the vertices of regular triangular and quadrangular pyramids
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 102-119
%N 56
%U http://geodesic.mathdoc.fr/item/VTGU_2018_56_a8/
%G ru
%F VTGU_2018_56_a8
V. M. Pestrenin; I. V. Pestrenina; L. V. Landik. Stress components and loading restrictions at the vertices of regular triangular and quadrangular pyramids. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 56 (2018), pp. 102-119. http://geodesic.mathdoc.fr/item/VTGU_2018_56_a8/

[1] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners in extension”, J. App. Mech., 19 (1952), 526–528

[2] Aksentyan O. K., “Features of the stress-strain state of plate in the vicinity of the rib”, Prikladnaya matematika i mekhanika – Journal of Applied Mathematics and Mechanics, 1967, no. 1, 178–186 | Zbl

[3] Ufyiand Ya.S., Integral transformations in the problems of the theory of elasticity, Izd. AN SSSR, M., 1967, 402 pp.

[4] Kondrat'ev V.A., “Boundary value problems for elliptic equations in domains with conical or angular points”, Tr. Mosk. Mat. Obs., 16, 1967, 209–292 | Zbl

[5] Bogy D. B., “Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions”, Trans. ASME. Ser. E, 38:2 (1971), 377–386 | DOI

[6] Cook T. S., Erdogan F., “Stresses in boded materials with a crack perpendicular to the interface”, Int. J. Eng. Sci., 10:8 (1972), 677–696 | DOI

[7] Maz'ya V.G., Plamenevskiy B. A., “On the coefficients in the asymptotics of the solutions of elliptic boundary value problems near the edge”, Dokl. Akad. Nauk SSSR, 229:1 (1976), 33–36 | MR | Zbl

[8] Parton V. Z., Perlin P. I., Methods of the mathematical theory of elasticity, Nauka, M., 1981, 688 pp. | MR

[9] Chobanyan K. S., Stresses in the composite elastic bodies, Izd-vo AN ArmSSR, Yerevan, 1987, 338 pp.

[10] Shemyakin E. I., “On the boundary-value problems of the theory of elasticity for the domains with angular points (plane deformation)”, Dokl. Akad. Nauk, 347:3 (1996), 342–345 | Zbl

[11] Hideo Koguchi, Takashi Muramoto, “The order of stress singularity near the vertex in threedimensional joints”, Int. J. Solids and Structures, 37:35 (2000), 4737–4762 | DOI | MR | Zbl

[12] Barut A., Guven I., Madenci E., “Analysis of singular stress fields at junctions of multiple dissimilar materials under mechanical and thermal loading”, Int. J. of Solid and Structures, 38:50–51 (2001), 9077–9109 | DOI | Zbl

[13] Shannon S., Peron V., Yosibash Z., “Singular asymptotic solution along an elliptical edge for the Laplace equation in 3-D”, Engineering Fracture Mechanics, 2015, no. 134, 174–185 | DOI

[14] Sinclair G. B., “Stress singularities in classical elasticity –I: Removal, interpretation and analysis”, App. Mech. Rev., 57:4 (2004), 251–297 | DOI

[15] Shannon S., Peron V., Yosibash Z., “The Laplace equation in 3-D domains with cracks: Dual singularities with log terms and extraction of corresponding edge flux intensity functions”, Mathematical Methods in the Applied Sciences, 34 (2016), 4951–4963 | DOI | MR

[16] Xu L. R., Kuai H., Sengupta S., “Dissimilar material joints with and without free-edge stress singularities: Part II. An integrated numerical analysis”, Experimental Mechanics, 44:6 (2004), 616–621 | DOI

[17] Ch. Mittelstedt, W. Becker, “Efficient computation of order and mode of threedimensional stress singularities in linear elasticity by the boundary finite element method”, Int. J. Solids and Structures, 43:10 (2006), 2868–2903 | DOI | Zbl

[18] Yongwoo Lee, Insu Jeon, Seyoung Im, “The stress intensities of three-dimensional corner singularities in a laminated composite”, Int. J. Solids and Structures, 43:9 (2006), 2710–2722 | DOI | Zbl

[19] Paggi M., Carpinteri A., “On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion”, Mech. Rev, 61 (2008), 22 pp. | DOI | MR

[20] Zhixue Wu, “A method for eliminating the effect of 3-D bi-material interface corner geometries on stress singularity”, Engineering Fracture Mechanics, 73:7 (2005), 953–962 | DOI

[21] Hideo Koguchi, Joviano Antonio da Costa, “Analysis of the stress singularity field at a vertex in 3D-bonded structures having a slanted side surface”, Int. J. Solids and Structures, 47 (2010), 3131–3140 | DOI | Zbl

[22] Kovalenko M. D., Galadzhiev S. V., Gogoleva O. S., Trubnikov D. V., “Features of the stress state for finite regions near to angular points of a boundary”, Mekhanika kompozitsionnykh materialov i konstruktsiy, 17:1 (2011), 53–60 | MR

[23] Andreev A. V., “Superposition of power-logarithmic and power singular solutions in two-dimensional elasticity problems”, Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika – PNRPU Mechanics Bulletin, 2013, no. 1, 5–30

[24] Ryazantseva E. A., The method of boundary states in problems of the theory of elasticity with singularities of physical and geometric nature, Dissertation, Lipetsk, 2015 | Zbl

[25] Fedorov A. Yu., Investigation and optimization of the stress state in the vicinity of singular points of the elastic bodies, Dissertation, Perm, 2016

[26] Xu W., Tong Z., Leung A. Y. T., Xu X., Zhou Z., “Evaluation of the stress singularity of an interface V-notch in a bimaterial plate under bending”, Engineering Fracture Mechanics, 168 (2016), 11–25 | DOI

[27] He Z., Kotousov A., “On Evaluation of Stress Intensity Factor from In-Plane and Transverse Surface Displacements”, Experimental Mechanics, 56:8 (2016), 1385–1393 | DOI

[28] Dimitrov A., Andra H., Schnack E., “Efficient computation of order and mode of corner singularities in 3D-elasticity”, Int. J. Num. Meth. Engng., 52:8 (2001), 805–827 | DOI | Zbl

[29] Apel T., Mehrmann V., Watkins D., “Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures”, Comput. Methods Appl. Mech. Engng., 2002, no. 191, 4459–4473 | DOI | Zbl

[30] Kovalev B. D., Formation of Euler hydrodynamics, Nauka, M., 1983, 146–167

[31] Pestrenin V. M., Pestrenina I. V., Landik L. V., “Nonstandard problems of homogeneous structural elements with wedge shape features in the plane case”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 1(27), 95–109

[32] Pestrenin V. M., Pestrenina I. V., Landik L. V., “Stress-strain state near the wedge top with rigid fastening of sides”, Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika – PNRPU Mechanics Bulletin, 2016, no. 3, 131–147 | DOI

[33] Pestrenin V. M., Pestrenina I. V., Landik L. V., “Stress state at the vertex of a composite wedge, one side of which slides without friction along a rigid surface”, Latin American J. Solids and Structures, 14:11 (2017), 2067–2088 | DOI

[34] Pestrenin V. M., Pestrenina I. V., Landik L. V., “Nonstandart problems for structural elements with spatial composite ribs”, Mechanics of Composite Materials, 51:4 (2015), 489–504 | DOI

[35] Pestrenin V. M., Pestrenina I. V., “Constraints on stress components at the internal singular point of an elastic compound structure”, Mechanics of Composite Materials, 53:1 (2017), 107–116 | DOI

[36] Pestrenin V. M., Pestrenina I. V., Landik L. V., “Restrictions on stress components in the top of round cone”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 52, 89–101 | DOI | MR