Numerical investigation of the methane hydrate decomposition in the process of warm gas injection into a hydrate-saturated reservoir
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 56 (2018), pp. 88-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Currently, natural reservoirs of the gas hydrates represent a serious alternative to the conventional sources of the natural gas due to a significant amount of hydrates and concentrated state of gas in them. The main methods for methane extraction from such reservoirs are the pressure reduction, heating hydrate-containing rocks, injecting carbon dioxide into the bed, injecting organic or saline solutions contributing to a gas hydrates' decomposition. A mathematical model in a flat-radial approximation is proposed in the paper, and the properties of warm gas (methane), whose temperature is higher than that of bed at the initial state, injecting into a natural stratum initially saturated with methane and its hydrate are investigated. The developed mathematical model considers the main physical particularities of a thermal effect on the hydrate-saturated reservoir, such as non-isothermal gas filtration, gas hydrate decomposition, real gas properties, adiabatic cooling effects, and the Joule–Thomson effect. The numerical solution to a one-dimensional problem describing distributions of the main parameters in the reservoir is obtained. An influence of the injected gas parameters and initial hydrate saturation of the bed on the intensity of methane hydrate decomposition is studied. It is shown that the gas hydrate decomposition during the process of a warm gas injection into the hydrate-saturated reservoir is characterized by a frontal mode of phase transitions.
Keywords: gas hydrate, porous medium
Mots-clés : non-isothermal filtration, hydrate decomposition.
@article{VTGU_2018_56_a7,
     author = {N. G. Musakaev and M. K. Khasanov and S. L. Borodin and D. S. Belskikh},
     title = {Numerical investigation of the methane hydrate decomposition in the process of warm gas injection into a hydrate-saturated reservoir},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {88--101},
     year = {2018},
     number = {56},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_56_a7/}
}
TY  - JOUR
AU  - N. G. Musakaev
AU  - M. K. Khasanov
AU  - S. L. Borodin
AU  - D. S. Belskikh
TI  - Numerical investigation of the methane hydrate decomposition in the process of warm gas injection into a hydrate-saturated reservoir
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 88
EP  - 101
IS  - 56
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_56_a7/
LA  - ru
ID  - VTGU_2018_56_a7
ER  - 
%0 Journal Article
%A N. G. Musakaev
%A M. K. Khasanov
%A S. L. Borodin
%A D. S. Belskikh
%T Numerical investigation of the methane hydrate decomposition in the process of warm gas injection into a hydrate-saturated reservoir
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 88-101
%N 56
%U http://geodesic.mathdoc.fr/item/VTGU_2018_56_a7/
%G ru
%F VTGU_2018_56_a7
N. G. Musakaev; M. K. Khasanov; S. L. Borodin; D. S. Belskikh. Numerical investigation of the methane hydrate decomposition in the process of warm gas injection into a hydrate-saturated reservoir. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 56 (2018), pp. 88-101. http://geodesic.mathdoc.fr/item/VTGU_2018_56_a7/

[1] Makogon Yu. F., Hydrates of natural gases, Nedra, M., 1974, 208 pp.

[2] Makogon Y. F., Holditch S. A., Makogon T. Y., “Natural gas-hydrates — A potential energy source for the 21st Century”, J. Petroleum Science and Engineering, 56 (2007), 14–31 | DOI

[3] Istomin V. A., Yakushev V. S., Gas hydrates in the natural environment, Nedra, M., 1992, 236 pp.

[4] Shagapov V. Sh., Musakaev N. G., Khasanov M. K., “Formation of gas hydrates in a porous medium during an injection of cold gas”, Int. J. Heat and Mass Transfer, 84 (2015), 1030–1039 | DOI

[5] Shagapov V. Sh., Musakaev N. G., Dynamics of the formation and decomposition of hydrates in the systems of gas production, transportation, and storage, Nauka, M., 2016, 238 pp.

[6] Koh A. C., Sum A. K., Sloan E. D., “State of the art: Natural gas hydrates as a natural resource”, J. Natural Gas Science and Engineering, 8 (2012), 132–138 | DOI

[7] Makogon Y. F., “Natural gas hydrates — A promising source of energy”, J. Natural Gas Science and Engineering, 2:1 (2010), 49–59 | DOI

[8] Yang J., Okwananke A., Tohidi B., Chuvilin E., Maerle K., Istomin V., Bukhanov B., Cheremisin A., “Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration”, Energy Conversion and Management, 136 (2017), 431–438 | DOI

[9] Vasil'ev V. I., Popov V. V., Tsypkin G. G., “Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs”, Fluid Dynamics, 41:4 (2006), 599–605 | DOI | Zbl

[10] Musakaev N. G., Borodin S. L., Khasanov M. K., “The mathematical model of the gas hydrate deposit development in permafrost”, Int. J. Heat and Mass Transfer, 118 (2018), 455–461 | DOI

[11] Shagapov V. Sh., Khasanov M. K., Musakaev N. G., Ngoc Hai Duong, “Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide”, Int. J. Heat and Mass Transfer, 107 (2017), 347–357 | DOI

[12] Shagapov V. S., Khasanov M. K., Musakaev N. R., “Injection of liquid carbon dioxide into a reservoir partially saturated with methane hydrate”, Journal of Applied Mechanics and Technical Physics, 57:6 (2016), 1083–1092 | DOI | DOI | MR | Zbl

[13] Moridis G. J., “Numerical studies of gas production from methane hydrates”, SPE gas technology symposium (Calgary, 2002), SPE 75691 | DOI

[14] Musakaev N. G., Khasanov M. K., “The self-similar solutions of the problem of carbon dioxide injection into the reservoir saturated with methane and its hydrate”, AIP Conference Proceedings, 1770 (2016), 030106 | DOI

[15] Shagapov V. S., Chiglintseva A. S., Rusinov A. A., “Theoretical modeling of gas extraction from a partially gas-saturated porous gas-hydrate reservoir with respect to thermal interactions with surrounding rocks”, Theoretical Foundations of Chemical Engineering, 50:4 (2016), 449–458 | DOI | DOI

[16] Musakaev N. G., Borodin S. L., Belskikh D. S., “Mathematical model and algorithm for solving the problem of non-isothermal gas filtration in reservoir in case of hydrate decomposition”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika, 9:2 (2017), 22–29 | DOI

[17] Stolpovskiy M. V., Shcheglova E. P., “On heating the porous media under gas hydrates formation”, Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika – Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 2:2 (2016), 23–35 | DOI

[18] Borodin S. L., “Numerical solution of the Stefan's problem”, Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika – Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 1:3 (2015), 164–175

[19] Basniev K. S., Kochina I. N., Maksimov V. M., Underground hydromechanics, Nedra, M., 1993, 416 pp.

[20] Argunova K. K., Bondarev E. A., Rozhin I. I., “Influence of non-isothermal effects on gas production in northern regions with account for possibility of hydrate formation at the well bottom hole”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Matematika, mekhanika, informatika – Journal of Mathematical Sciences, 12:4 (2012), 9–15

[21] Shagapov V. Sh., Urazov R. R., Musakaev N. G., “Dynamics of formation and dissociation of gas hydrates in pipelines at the various modes of gas transportation”, Heat and Mass Transfer, 48:9 (2012), 1589–1600 | DOI

[22] Chernov A. A., Pil'nik A. A., “Analytical solution of the problem of dissolved gas segregation in melt by the plain crystallization front”, J. Crystal Growth, 483 (2018), 291–296 | DOI

[23] Musakaev N. G., Borodin S. L., “Mathematical model of the two-phase flow in a vertical well with an electric centrifugal pump located in the permafrost region”, Heat and Mass Transfer, 52:5 (2016), 981–991 | DOI

[24] Sloan E. D., Koh A. C., Clathrate Hydrates of Natural Gases, Third Edition, CRC Press, Taylor Francis Group, 2008, 730 pp.

[25] Musakaev N. G., Borodin S. L., “To the question of the interpolation of the phase equilibrium curves for the hydrates of methane and carbon dioxide”, MATEC Web of Conferences, 115 (2017), 05002 | DOI