The hedging strategy for Asian option
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 56 (2018), pp. 29-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with the problem of portfolio investment in the Black–Scholes model with several risky assets. The hedging strategy for Asian option is found using the martingale method. The analytical properties (differentiability) of the densities of exponential random variables are studied.
Keywords: hedging strategy, Asian option, stochastic differential equations, Brownian motion, Black and Scholes model.
@article{VTGU_2018_56_a2,
     author = {A. A. Shishkova},
     title = {The hedging strategy for {Asian} option},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {29--41},
     year = {2018},
     number = {56},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_56_a2/}
}
TY  - JOUR
AU  - A. A. Shishkova
TI  - The hedging strategy for Asian option
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 29
EP  - 41
IS  - 56
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_56_a2/
LA  - en
ID  - VTGU_2018_56_a2
ER  - 
%0 Journal Article
%A A. A. Shishkova
%T The hedging strategy for Asian option
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 29-41
%N 56
%U http://geodesic.mathdoc.fr/item/VTGU_2018_56_a2/
%G en
%F VTGU_2018_56_a2
A. A. Shishkova. The hedging strategy for Asian option. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 56 (2018), pp. 29-41. http://geodesic.mathdoc.fr/item/VTGU_2018_56_a2/

[1] Kozhin K., “All about exotic options”, Stocks and bonds market, 2002, no. 1(15), 53–57 (in Russian)

[2] Zang P. G., “An introduction to exotic options”, European Financial Managment, 1:1 (1995), 87–95 | DOI | MR

[3] Geman H., Yor M., “Bessel processes, Asian options, and perpetuities”, Mathematical Finance, 3:4 (1993), 35–38 | DOI

[4] Kemna A. G. Z., Vorst A. C. F., “Pricing method for options based on average asset values”, Banking Finance, 14 (1990), 113–129 | DOI

[5] Carverhill A. P., Clewlow L. J., “Valuing average rate (Asian) options”, Risk, 3 (1990), 25–29

[6] Lapeyre B., Temam E., “Competitive Monte Carlo methods for the pricing of Asian options”, J. Computational Finance, 5:1 (2001), 39–57 | DOI | MR

[7] Fu M., Madan D., Wang T., “Pricing continuous Asian options: a comparison of Monte Carlo and Laplace transform invertion methods”, J. Computational Finance, 2:2 (1998), 49–74 | DOI

[8] Seghiouer H., Lidouh A., Nqi F. Z., “Pricing Asian options by Monte Carlo Method under MPI Environment”, Int. J. Math. Analysis, 2:27 (2008), 1301–1317 | MR | Zbl

[9] Ruttiens A., “Average rate options, classical replica”, Risk, 3 (1990), 33–36

[10] Vorst T., “Prices and hedge ratios of average exchange rate options”, Int. Review of Financial Analysis, 1:3 (1992), 179–193 | DOI

[11] Levy E., “Pricing European Average Rate Currency Options”, Int. Money Finance, 11 (1992), 474–491 | DOI

[12] Shiryaev A. N., Essentials of Stochastic Finance: Facts, Models, Theory, World Scientific Publishing Company, Hackensack, New Jersey, 1999, 834 pp. | MR

[13] Liptser R. S., Shiryaev A. N., Statistics of random processes, 2nd rev. and exp. ed., Springer Verlag, Berlin, 2001, 425 pp. | MR

[14] Shishkova A. A., “Calculation of Asian options for the Black–Scholes model”, Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 51, 48–63 | DOI | MR