Boundary problems in a special domain for an equation of mixed type
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 56 (2018), pp. 17-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value problems for a mixed type equation with a spectral parameter in a region consisting of two sectors of a circle and two characteristic triangles are formulated; the unique solvability of the problems posed is proved. The objects of study are boundary value problems for differential equations of mixed type with a spectral parameter. The purpose of the study is the formulation and study of boundary value problems for differential equations of mixed type with a spectral parameter in special domains. Methods of the theory of partial differential equations and the theory of singular integral equations, energy integrals, and the principle of extremum, as well as the method of separation of variables and the theory of Bessel functions, were used. The results include the formulation of boundary-value problems for a mixed type equation with the spectral parameter in a region consisting of two sectors of a circle and two characteristic triangles. It has been proved that the problems are uniquely solvable.
Keywords: equations of mixed type, spectral parameter, boundary problem, uniqueness of solution, integral equation.
Mots-clés : existence of solution
@article{VTGU_2018_56_a1,
     author = {I. T. Tojiboev},
     title = {Boundary problems in a special domain for an equation of mixed type},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {17--28},
     year = {2018},
     number = {56},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_56_a1/}
}
TY  - JOUR
AU  - I. T. Tojiboev
TI  - Boundary problems in a special domain for an equation of mixed type
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 17
EP  - 28
IS  - 56
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_56_a1/
LA  - ru
ID  - VTGU_2018_56_a1
ER  - 
%0 Journal Article
%A I. T. Tojiboev
%T Boundary problems in a special domain for an equation of mixed type
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 17-28
%N 56
%U http://geodesic.mathdoc.fr/item/VTGU_2018_56_a1/
%G ru
%F VTGU_2018_56_a1
I. T. Tojiboev. Boundary problems in a special domain for an equation of mixed type. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 56 (2018), pp. 17-28. http://geodesic.mathdoc.fr/item/VTGU_2018_56_a1/

[1] Kal'menov T. Sh., “The spectrum of the Tricomi problem for the Lavrent'ev–Bitsadze equation”, Differ. Uravn., 13:8 (1977), 1718–1725

[2] Moiseev E. I., “On Uniqueness Theorems for Nonlocal Boundary Value Problems for the Lavrent'ev–Bitsadze Equation”, Dokl. Akad. Nauk SSSR, 238:3 (1978), 531–533 | Zbl

[3] Ponomarev S. M., Spectral theory of the main boundary-value problem for the mixed Lavrent'ev–Bitsadze equation, Doct. Sci. (Math.), Moscow State University, M., 1981, 139 pp.

[4] Alimov Sh. A., “On a spectral problem of the Bitsadze-Samarskii type”, Dokl. Acad. Nauk SSSR, 287:6 (1986), 1289–1290 | Zbl

[5] Berdyshev A. S., “On the existence of eigenvalues of a boundary-value problem for the parabolic-hyperbolic equation of the third order”, Uzbekskii Matematicheskii Zhurnal, 1998, no. 2, 19–25

[6] Dzhuraev T. D., “On spectral problems for compound type equations of the third order”, Dokl. Akad. Nauk Rep. Uzb., 2006, no. 2, 5–8

[7] Kal'menov T. Sh., “On the spectrum of the Tricomi problem for a mixed type equation of the fourth order”, Differ. Uravn., 15:2 (1979), 354–356 | Zbl

[8] Moiseev E. I., Equations of mixed type with the spectral parameter, Moscow University Publ., M., 1988, 150 pp.

[9] Moiseev E. I., Abbasi N., “On completeness of eigenfunctions of the Frankl problem with the unevenness condition”, Differ. Uravn., 44:3 (2008), 390–393 | Zbl

[10] Salakhitdinov M. S., Urinov A. K., Boundary-value problems for mixed type equations with the spectral parameter, Fan, Tashkent, 1997, 166 pp.

[11] Salakhitdinov M. S., Urinov A. K., “On a problem for eigenvalues for a mixed type equation with two singular coefficients”, Uzbek Math. J., 2006, no. 3, 68–78

[12] Salakhitdinov M. S., Urinov A. K., “Eigenvalue problems for a mixed-type equation with two singular coefficients”, Sib. Math. J., 48 (2007), 707 | DOI | MR | Zbl

[13] Sabitov K. B., “On Tricomi's problem for the Lavrent'ev–Bitsadze equation with the spectral parameter”, Differ. Uravn., 22:11 (1986), 1977–1984 | Zbl

[14] Sabitov K. B., Karamova A. A., “Spectral properties of solutions of the Tricomi problem for equations of mixed type with two lines of degeneracy, and their applications”, Izvestiya: Mathematics, 65:4 (2001), 769–785 | DOI | DOI | MR | Zbl

[15] Tashmirzaev Yu. U., “On a problem for eigenvalues for mixed type equations with a nonsmooth degeneracy lines”, Izv. Akad. Nauk Uzbek SSR, 1979, no. 4, 17–24

[16] Urinov A. K., Boundary-value problems for with nonsmooth degeneracy lines, Cand. Sci. (Math.), Tashkent Institute of Mathematics, 1983, 123 pp.

[17] Urinov A. K., “Problems for eigenvalues for a mixed type equation with a singular coefficient”, Dokl. Adyg (Cherkes) Int. Akad. Nauk, 7:2 (2005), 62–67

[18] Bitsadze A. V., Samarskii A. A., “On some simplest generalizations of linear elliptic boundary-value problems”, Dokl. Akad. Nauk SSSR, 185:4 (1969), 739–740 | Zbl

[19] Nakhushev A. M., Equations of mathematical biology, Vysshaya Shkola, M., 1995, 301 pp.

[20] Bitsadze A. V., Some classes of partial differential equations, Nauka, M., 1981, 448 pp.

[21] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1966, 724 pp.

[22] Muskhelishvili N. I., Singular integral equations, Nauka, M., 1968, 512 pp.

[23] Urinov A. K., Tozhiboev I. T., “On solving a problem for a mixed type equation with a singular coefficient”, Uzbek Math. J., 2007, no. 4

[24] Tojiboev I. T., “On an inner-boundary problem for the Lavrent'ev–Bitsadze equation with a nonsmooth type change line”, Dokl. AMAN, 10:1 (2008)

[25] Tojiboev I. T., “On a spectral problem for a mixed type equation”, Vestnik FerGU, 2011, no. 2, 5–7

[26] Salakhitdinov M. S., Urinov A. K., A contribution to the spectral theory of mixed type equations, Mumtoz suz, Tashkent, 2015, 356 pp.