Investigation of the stabilezed flow of pseudoplastic liquid, described by the Sisko model, in the cylindrical tube
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 99-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The pseudoplastic fluid flow described by the Sisko model was investigated, the dependence of the fluid flow rate on the pressure drop and also radial distribution of the velocity and the effective viscosity of the flow were determined. The effective viscosity of the flow is directly proportional to the viscosity at an infinite shear rate and depends nonlinearly on the Sisko number. In the peripheral and near-wall part of the flow, the effective viscosity is characterized by low values. However, in the vicinity of the flow axis, where the velocity gradient has low values, a significant increasing the effective viscosity is observed. As the shear rate increases, the effective viscosity decreases. With an increase in the consistency of the fluid and the viscosity at an infinite shear rate, the value of the average viscosity increases. This effect is most pronounced for low-velocity flows moving at a small pressure drop. The investigations carried out have shown that for values of the Sisko number less then 500 the non-Newtonian properties of the flow appear insignificantly and with an accuracy sufficient for engineering calculations, one can consider the flow of a Newtonian fluid. The coefficient of hydraulic resistance of a pseudo-plastic Sisko fluid is significantly larger than the resistance coefficient of a Newtonian fluid with a viscosity $\mu_\infty$ moving under the same pressure drop.
Keywords: rheology, pseudoplastic media, viscosity, non-Newtonian fluids, the Sisko model.
@article{VTGU_2018_55_a8,
     author = {O. V. Matvienko},
     title = {Investigation of the stabilezed flow of pseudoplastic liquid, described by the {Sisko} model, in the cylindrical tube},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {99--112},
     year = {2018},
     number = {55},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a8/}
}
TY  - JOUR
AU  - O. V. Matvienko
TI  - Investigation of the stabilezed flow of pseudoplastic liquid, described by the Sisko model, in the cylindrical tube
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 99
EP  - 112
IS  - 55
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a8/
LA  - ru
ID  - VTGU_2018_55_a8
ER  - 
%0 Journal Article
%A O. V. Matvienko
%T Investigation of the stabilezed flow of pseudoplastic liquid, described by the Sisko model, in the cylindrical tube
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 99-112
%N 55
%U http://geodesic.mathdoc.fr/item/VTGU_2018_55_a8/
%G ru
%F VTGU_2018_55_a8
O. V. Matvienko. Investigation of the stabilezed flow of pseudoplastic liquid, described by the Sisko model, in the cylindrical tube. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 99-112. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a8/

[1] Kutepov A. M., Polyanin L. D., Zapryanov Z. D., et al., Chemical Hydrodynamics, a textbook, Byuro Kvantum, M., 1996

[2] Malkin A. Ya., Isaev A. I., Rheology: Concepts, Methods, and Applications, ChemTec Publishing, Toronto, 2005

[3] Klimov D. M., Petrov A. G., Georgievskii D. V., Viscoplastic Flows: Dynamic Chaos, Stability, and Mixing, Nauka, M., 2005

[4] Wilkinson W. L., Non-Newtonian Fluids. Fluid Mechanics, Mixing, and Heat Transfer, Pergamon Press, London, 1960 | MR

[5] Matvienko O. V., Unger F. G., Bazuev V. P., Mathematical models of manufacturing processes for the preparation of bitumen disperse systems, Publishing house of TGASU, Tomsk, 2015

[6] Perminov A. V., Lyubimova T. P., “Stability of a stationary plane-parallel flow of a pseudoplastic fluid in a flat vertical layer”, Vychislitel'naya mehanika sploshnyh sred - Computational mechanics of continuous media, 7:3 (2014), 270–278 | DOI

[7] Vakhrushev A. A., Lipanov A. M., Vakhrushev A. V., “Numerical investigation of fluid flow with variable viscous properties in curved channels”, Khimicheskaya fizika i mezoskopiya - Chemical physics and mesoscopy, 7:3 (2005), 286–300

[8] Snigerev B. A., Tazyukov F. Kh., “Two-layer flow of polymer melts in the channels of spinnerets”, Izvestiya Saratovskogo Universiteta. Matematika. Mehanika. Informatika - Saratov University Journal of Mathematics, Mechanics, Informatics, 14:3 (2014), 349–354

[9] Kharlamov S. N., Tereshchenko R. E., “Nonisothermal flow of rheologically complex viscous media with variable properties in the elements of pipeline systems”, Gornyy informatsionno-analiticheskiy byulleten' - Mountain information and analytical bulletin, 2013, no. 4, 293–298

[10] Turbin M. V., “Investigation of the initial-boundary value problem for the Herschel–Balkley fluid motion model”, Vestnik Voronezhskogo goudarstvennogo universitetat. Ser. Fizika. Matematika - Bulletin of the Voronezh state university. Ser. Physics. Mathematics, 2013, no. 2, 246–257

[11] Alekseeva K. G., Borzenko E. I., “Structure of the Shvedov-Bingham fluid flow in a channel with a discontinuity”, Russian Physical Journal, 55:7/2 (2012), 15–19 (In Russian)

[12] Borzenko E. I., Ryl'tsev I. A., Shrager G. R., “Kinematics of Bulkley–Herschel fluid flow with a free surface during the filling of a channel”, Fluid Dynamics, 52:5 (2017), 646–656 | DOI | DOI | MR | Zbl

[13] Borzenko E. I., Schrager G. R., Yakutenok V. A., “Free-surface non-newtonian fluid flow in a round pipe”, Journal of applied mechanics and technical physics, 53:2 (2012), 190–197 | DOI | Zbl

[14] Fan H. H., Zhou H. B., Peng Qi, Zhai Y. H., “A generalized hydraulic calculation model for non-Newtonian fluid pipe flow and its application evaluation”, SOCAR Proceedings, 2014 | DOI

[15] Patel M., Patel J., Timol M. G., “Laminar boundary layer flow of Sisko fluid”, Applications and Applied Mathematics Intern. J., 10:2 (2015), 909–918 | MR | Zbl

[16] Moallemi N., Shafieenejad I., Novinzadeh A. B., “Exact solutions for flow of a sisko fluid in pipe”, Bulletin of the Iranian Mathematical Society, 37:2-1, Special Issue (2011), 49–60 | MR | Zbl

[17] Matvienko O. V., Bazuev V. P., Yuzhanova N. K., “Mathematical simulation of a twisted pseudoplastic fluid flow in a cylindrical channel”, Journal of Engineering Physics and Thermophysics, 84:3 (2011), 589–593 | DOI

[18] Matvienko O. V., Bazuev V. P., Dul'zon N. K., “Mathematical simulation of the swirling flow of a dilatant liquid in a cylindrical channel”, Journal of Engineering Physics and Thermophysics, 87:1 (2014), 200–207 | DOI

[19] Matvienko O. V., Bazuev V. P., Dul'zon N. K., “Mathematical simulation of a swirling viscoplastic fluid flow in a cylindrical channel”, Journal of Engineering Physics and Thermophysics, 87:5 (2014), 1177–1185 | DOI

[20] Matvienko O. V., “Numerical study of the flow of non-Newtonian fluids in a cylindrical channel”, Russian Physical Journal, 57:8/2 (2014), 183–189

[21] Matvienko O. V., Bazuev V. P., Venik V. N., Smirnova N. G., “Numerical investigation of Herschel–Bulkley fluids mixing”, TSUA 2014, IOP Conference Series: Materials Science and Engineering Advanced Materials in Construction and Engineering, 71, no. 1, 2015, 012034 | DOI

[22] Loitsyanskii L. G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966 | MR

[23] Ostrovsky G. M., Applied mechanics of heterogeneous media, Nauka, Saint Petersburg, 2000

[24] Schlichting H., Boundary-layer theory, McGraw-Hill, New York, 1955 | MR