Mathematical modeling of static deformation of a layered construction with incompressible layers
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 72-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a mathematical model of static deformation of a layered medium with alternating layers of different stiffness. The proposed regularization of the problem is implemented using the parameter inverse to the volume compressibility modulus. The obtained numerical results are compared with analytical solution to verify a numerical algorithm convergence. The problem of stress-strain state calculation in a thick-walled pipe under internal pressure is considered as a test problem. Test problem solution is obtained applying the proposed methodology using regularization parameters corresponding to the Poisson ratio of 0.35, 0.45, and 0.49. The problem with compressible medium is also solved at the Poisson ratio of 0.49 and 0.499. The grid convergence of the problem solution is analyzed and the relative error is calculated. When considering the calculations obtained for compressible media at the Poisson ratio equal to 0.49, the relative error as regard to analytical solution exceeds an acceptable level, and when the ratio is of 0.499 for coarse meshes, the calculated results are different from analytical data. When using the proposed approach with regularization parameters corresponding to a range of Poisson ratio from 0.35 up to 0.45, the numerical solution is stable and the error obtained for calculated displacements, stresses, and strains for any kind of grid is less than 0.5
Keywords: layered bodies of revolution, elasticity, discrete scheme, incompressibility, regularization
Mots-clés : convergence.
@article{VTGU_2018_55_a6,
     author = {E. S. Vyachkin and V. O. Kaledin and E. V. Reshetnikova and E. A. Vyachkina and A. E. Gileva},
     title = {Mathematical modeling of static deformation of a layered construction with incompressible layers},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {72--83},
     year = {2018},
     number = {55},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a6/}
}
TY  - JOUR
AU  - E. S. Vyachkin
AU  - V. O. Kaledin
AU  - E. V. Reshetnikova
AU  - E. A. Vyachkina
AU  - A. E. Gileva
TI  - Mathematical modeling of static deformation of a layered construction with incompressible layers
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 72
EP  - 83
IS  - 55
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a6/
LA  - ru
ID  - VTGU_2018_55_a6
ER  - 
%0 Journal Article
%A E. S. Vyachkin
%A V. O. Kaledin
%A E. V. Reshetnikova
%A E. A. Vyachkina
%A A. E. Gileva
%T Mathematical modeling of static deformation of a layered construction with incompressible layers
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 72-83
%N 55
%U http://geodesic.mathdoc.fr/item/VTGU_2018_55_a6/
%G ru
%F VTGU_2018_55_a6
E. S. Vyachkin; V. O. Kaledin; E. V. Reshetnikova; E. A. Vyachkina; A. E. Gileva. Mathematical modeling of static deformation of a layered construction with incompressible layers. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 72-83. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a6/

[1] Recommendations for the design and installation of polymeric support of a bridge, Rosavtodor, M., 2008

[2] Petrenko V. I., Managed power plants for solid propellants, Mashinostroenie, M., 2003, 464 pp.

[3] Bolotin V. V., Novichkov Yu. N., Mechanics of multilayered structures, Mashinostroenie, M., 1980, 375 pp.

[4] Mal'kov V. M., Mechanics of multilayered elastomeric structures, SPbGU, Saint-Petersburg, 1998

[5] Dimitrienko Yu. I., Tsariov S. M., Veretennikov A. V., “Development of a finite element method for calculation of structures made of incompressible materials with large deformations”, Vestnik MGTU im. N.E. Baumana. Seriya: Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2007, no. 3, 69–83

[6] Bathe K. Yu., Finite Element Procedures, Prentice Hall, New Jersey, 1996

[7] Oshchepkov A. N., “Investigation of a stress-strain state of elastic support hinge of a rotary control nozzle of solid fuel rocket engine using Ansys Workbench software package”, Aerokosmicheskaya tekhnika, vysokie tekhnologii i innovatsii, 1 (2016), 116–118

[8] Truesdell C., A First Course in Rational Continuum Mechanics, Academic Press, New York, 1977 | MR | Zbl

[9] Korobeynikov S. N., Nonlinear deformation of solids, Izdatel'stvo SO RAN, Novosibirsk, 2000, 262 pp.

[10] Pelevin A. G., Svistkov A. L., “Search algorithm for the constants of a model of rubber mechanical behavior”, Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika - PNRPU Mechanics Bulletin, 2009, no. 1, 85–92

[11] Nemirovskiy Yu. V., Yankovskiy A. P., “Numerical simulation of behaviour of the three-dimensional reinforcement composite materials with nonlinear memory”, Altai State University Journal, 2012, no. 1-1, 103–106

[12] Mooney M., “A theory of large elastic deformation”, J. Appl. Phys., 11 (1940), 582–592 | DOI | Zbl

[13] Treloar L. R. G., The physics of rubber elasticity, ed. E.V. Kuvshinskiy, IIL, M., 1953

[14] Zhukov B. A., “Nonlinear interaction of finite longitudinal shear with finite torsion of a rubber-like bushing”, Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela - Mechanics of Solids, 2015, no. 3, 127–135

[15] Kolpak E. P., “Hollow cylinder of incompressible material under large deformations”, Nelineynye problemy mekhaniki i fiziki deformiruemogo tela, Trudy nauchnoy shkoly akademika V. V. Novozhilova, 1, 1998, 96–117

[16] Akchurin T. R., Mal'kov V. M., “Theoretical and experimental investigation of twisting of an elastomeric cylindrical bearing”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya - Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2004, no. 1, 73–80

[17] Oden J., Finite elements of nonlinear continua, Mir, M., 1976, 465 pp.

[18] Vyachkin E. S., Reshetnikova E. V., Aul'chenko S. M., Ryabkov A. P., Vyachkina E. A., “The one-parametric model of the deformation of layered structures containing three-dimensional incompressible layers”, Nauchno-tekhnicheskiy vestnik Povolzh'ya - Scientific and Technological Volga Region Bulletin, 2016, no. 6, 120–123 | Zbl

[19] Kaledin V. O., Reshetnikova E. V., Ravkovskaya E. V., “Calculating algorithm for stresses in an elastic medium with internal kinematic bonds”, Chislennye metody resheniya zadach teorii uprugosti i plastichnosti, Materialy XXIV Vserossiyskoy konferentsii, 2015, 64–66

[20] Kaledin V. O., Certificate of the state registration for computer program «Software environment of a functional object oriented programming «Algozit», 2017612895, 2017

[21] Rabotnov Yu. N., Mechanics of deformable solids, Nauka, M., 1988