Investigation of characteristics of turbulent flame with effect of low energy fluctuations
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 57-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The physicochemical processes associated with combustion and flame propagation in various technological devices and in natural fires are realized under conditions of turbulence. Traditionally, in experimental studies of combustion processes, thermocouples are used to determine the temperature fields in a flame. The methods of thermography allow us to abandon the use of thermocouples and at the same time obtain information on the temperature distribution with good spatial and temporal resolution. In this paper we present the results of an investigation of the influence of sound perturbations on the combustion process. As combustible materials liquid hydrocarbon fuels (gasoline, kerosene, diesel fuel) and vegetable combustible materials (a mixture of field combustible materials, pine needles, pine wood, cedar wood) were used. To measure the flow velocity in a turbulent flame, the contactless optical method of flow diagnostics was used - particle image velocimetry (PIV) method. The intensity of the IR radiation of the flame and the temperature distribution in the flame were registered with the JADE J530SB thermal imager. As a result, a good agreement was reached on the estimation of the size of the vortex structures obtained using PIV and the dimensions of the temperature inhomogeneities recorded by means of IR thermography in a flame.
Mots-clés : combustion, turbulence, IR- diagnostic
Keywords: flame, PIV-measurements.
@article{VTGU_2018_55_a5,
     author = {M. V. Agafontsev and I. S. Anufriev and E. P. Kopyev and E. Yu. Shadrin and E. L. Loboda and A. V. Lutsenko},
     title = {Investigation of characteristics of turbulent flame with effect of low energy fluctuations},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {57--71},
     year = {2018},
     number = {55},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a5/}
}
TY  - JOUR
AU  - M. V. Agafontsev
AU  - I. S. Anufriev
AU  - E. P. Kopyev
AU  - E. Yu. Shadrin
AU  - E. L. Loboda
AU  - A. V. Lutsenko
TI  - Investigation of characteristics of turbulent flame with effect of low energy fluctuations
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 57
EP  - 71
IS  - 55
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a5/
LA  - ru
ID  - VTGU_2018_55_a5
ER  - 
%0 Journal Article
%A M. V. Agafontsev
%A I. S. Anufriev
%A E. P. Kopyev
%A E. Yu. Shadrin
%A E. L. Loboda
%A A. V. Lutsenko
%T Investigation of characteristics of turbulent flame with effect of low energy fluctuations
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 57-71
%N 55
%U http://geodesic.mathdoc.fr/item/VTGU_2018_55_a5/
%G ru
%F VTGU_2018_55_a5
M. V. Agafontsev; I. S. Anufriev; E. P. Kopyev; E. Yu. Shadrin; E. L. Loboda; A. V. Lutsenko. Investigation of characteristics of turbulent flame with effect of low energy fluctuations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 57-71. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a5/

[1] Lewis B., Elbe G., Combustion, Flames and Explosions of Gases, 3 ed., Academic Press, 1987

[2] Warnatz J., Maas U., Dibble R. W., Combustion, Springer, Berlin, 1999, 300 pp. | Zbl

[3] Shelkin K. I., “Influence of tube non-uniformities on the detonation ignition and propagation in gases”, JETP, 10 (1940), 823–827

[4] Loboda E. L., Reyno V. V., Vavilov V. P., “The use of infrared thermography to study the optical characteristics of flames from burning vegetation”, Infrared Physics and Technology, 67 (2014), 566–573 | DOI

[5] Kuznetsov V. T., Loboda E. L., “Experimental study of peat ignition upon exposure to radiant energy”, Combustion, Explosion, and Shock Waves, 46:6 (2010), 690–695 | DOI

[6] Qian C., Saito K., “Measurements of pool-fire temperature using IR technique”, Combustion Fundamentals and Applications. Joint Technical Meeting. Proceedings (April 23–26, 1995, San Antonio, TX), ed. Gore J. P., Combustion Institute/Central and Western States (USA) and Combustion Institute/Mexican National Section and American Flame Research Committee, 81–86

[7] Rinieri F., Balbi J.-H., Santoni P-A., “On the use of an infra-red camera for the measurement of temperature in fires of vegetative fuels”, QIRT 2006 http://qirt.gel.ulaval.ca/archives/qirt2006/papers/011.pdf | DOI

[8] Dupuy J., Vachet P., Marechal J., Melendez J., De Castro A. J., “Thermal infrared emission-transmission measurements in flames from a cylindrical forest fuel burner”, Int. J. Wildland Fire, 2007, no. 16, 324–340 | DOI

[9] Loboda E. L., Matvienko O. V., Vavilov V. P., Reyno V. V., “Infrared thermographic evaluation of flame turbulence scale”, Infrared Physics Technology, 72 (2015), 1–7 | DOI

[10] Loboda E. L., Agafontsev M. V., Reino V. V., “Choice of a spectral range for measuring temperature fields in a flame and recording high-temperature objects screened by the flame using IR diagnostic methods”, Russian Physics Journal, 58:2 (2015), 278–282 | DOI | MR

[11] Loboda E. L., Reyno V. V., “Influence of the coefficient of measuring temperatures at burning forest and steppe combustible materials with different moisture content with IR methods. Frequency analysis of temperature changing”, Optics of Atmosphere and Ocean, 2011, no. 11, 1002–1006 (In Russian)

[12] Anufriev I. S., Anikin Yu. A., Filkov A. I., et al., “Investigation into the structure of a swirling flow in a model of a vortex combustion chamber by laser Doppler anemometry”, Techn. Phys. Lett., 39:1 (2013), 30–32 | DOI

[13] Alekseenko S. V., Anufriev I. S., Vigriyanov M. S., et al., “Steam-enhanced regime foe liquid hydrocarbons combustion: velocity distribution in the burner flame”, Thermophysics and Aeromechanics, 21:3 (2014), 393–396 | DOI

[14] Anufriev I. S., Kopyev E. P., Loboda E. L., “Study of flame characteristics during liquid hydrocarbons combustion with steam gasification”, 20th Int. Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Proc. SPIE, 9292, November 25, 2014, 929226 | DOI

[15] Kairuki J., Dawson J. R., Mastorakos E., “Measurements in turbulent premixed bluff body flames close to blow-off”, Combustion and Flame, 159 (2012), 2589–2607 | DOI

[16] Albini F. A., “Physical model for fire spread in brush” (Pittsburg, 1967), Symposium (International) on Combustion, 11:1, Proc. 2 Int. Symposium on Combustion, 553–560 | DOI | MR

[17] Grishin A. M., Mathematical modeling of forest fires and new methods of fighting them, Publishing House of the Tomsk State University, Tomsk, 1997, 390 pp.

[18] Morvan D., Dupuy J. L., “Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation”, Combustion and Flame, 138:3, 199–210 | DOI | MR

[19] Perminov V. A., Loboda E. L., Reyno V. V., “Mathematical modeling of surface forest fires transition into crown forest fires”, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Proc. SPIE, 9292, November 25, 2014, 929225 | DOI

[20] Li Z.S., Li R., Sun Z. W., Rai X. S., Alden M., “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-short PLIF imaging of CH, OH, and CH2O in piloted premixed jet flame”, Combustion and Flame, 157 (2010), 1087–1096 | DOI

[21] Kathryn N. Gabet, Han Shen, Randy A. Patton, Frederik Fuest, Jeffrey A. Sutton, “A comparison of turbulent dimethyl ether and methane non-premixed flame structure”, Proc. Combustion Institute, 34 (2013), 1447–1454 | DOI

[22] Kazuhiro Yamamoto, Shinji Isii, Masahiro Ohnishi, “Local flame structure and turbulent burning velocity by joint PLIF imaging”, Proc. Combustion Institute, 33 (2011), 1285–1292 | DOI

[23] Anufriev I. S., Sharypov O. V., Shadrin E. Yu., “Flow diagnostics in a vortex furnace by particle image velocimetry”, Techn. Phys. Lett., 39:5 (2013), 30–37 | DOI

[24] Alekseenko S. V., Anufriev I. S., Vigriyanov M. S., et al., “Steam-Enhanced Regime for Liquid Hydrocarbons Combustion: Velocity Distribution in the Burner Flame”, Thermophys. Aeromech., 21:3 (2014), 393–396 | DOI

[25] Cant R. S., Mastorakos E., An Introduction to Turbulent Reacting Flows, Imperial College Press, 2008, 177 pp. | MR | Zbl