Mots-clés : decomposition formula.
@article{VTGU_2018_55_a4,
author = {A. K. Urinov and T. G. Ergashev},
title = {Confluent hypergeometric functions of many variables and their application to the finding of fundamental solutions of the generalized helmholtz equation with singular coefficients},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {45--56},
year = {2018},
number = {55},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a4/}
}
TY - JOUR AU - A. K. Urinov AU - T. G. Ergashev TI - Confluent hypergeometric functions of many variables and their application to the finding of fundamental solutions of the generalized helmholtz equation with singular coefficients JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2018 SP - 45 EP - 56 IS - 55 UR - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a4/ LA - ru ID - VTGU_2018_55_a4 ER -
%0 Journal Article %A A. K. Urinov %A T. G. Ergashev %T Confluent hypergeometric functions of many variables and their application to the finding of fundamental solutions of the generalized helmholtz equation with singular coefficients %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2018 %P 45-56 %N 55 %U http://geodesic.mathdoc.fr/item/VTGU_2018_55_a4/ %G ru %F VTGU_2018_55_a4
A. K. Urinov; T. G. Ergashev. Confluent hypergeometric functions of many variables and their application to the finding of fundamental solutions of the generalized helmholtz equation with singular coefficients. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 45-56. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a4/
[1] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. 1, McGraw-Hill Book Company, New York–Toronto–London, 1953
[2] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Halsted Press, New York–Chichester–Brisbane–Toronto, 1985, 428 pp. | MR | Zbl
[3] Jain R. N., “The confluent hypergeometric functions of three variables”, Proc. Nat. Acad. Sci. India Sect. A, 36 (1966), 395–408 | MR | Zbl
[4] Exton H., “On certain confluent hypergeometric of three variables”, Ganita, 21:2 (1970), 79–92 | MR | Zbl
[5] Urinov A. K., “Fundamental solutions for the some elliptic equations with singular coefficients”, Nauchnyj vestnik Ferganskogo gosudarstvennogo universiteta - Scientific Records of Fergana State University, 2006, no. 1, 5–11
[6] Hasanov A., “Fundamental solutions bi-axially symmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 52:8 (2007), 673–683 | DOI | MR | Zbl
[7] Hasanov A., Karimov E. T., “Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients”, Applied Mathematic Letters, 22 (2009), 1828–1832 | DOI | MR | Zbl
[8] Urinov A. K., Karimov E. T., “On fundamental solutions for 3D singular elliptic equations with a parameter”, Applied Mathematic Letters, 24 (2011), 314–319 | DOI | MR | Zbl
[9] Karimov E. T., “On a boundary problem with Neumann's condition for 3D singular elliptic equations”, Applied Mathematics Letters, 23 (2010), 517–522 | DOI | MR | Zbl
[10] Karimov E. T., “A boundary-value problem for 3-D elliptic equation with singular coefficients”, Progress in Analysis and its Applications, 2010, 619–625 | DOI | MR | Zbl
[11] Lauricella G., “Sille funzioni ipergeometriche a piu variabili”, Rend. Circ. Mat. Palermo, 7 (1893), 111–158 | DOI
[12] Erdélyi A., “Integraldarstellungen fur Produkte Whittakerscher Funktionen”, Nieuw Arch. Wisk., 1939, no. 2(20), 1–34 | MR
[13] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions”, Quart. J. Math. (Oxford) Ser. 11, 1940, 249–270 | DOI | MR
[14] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions. II”, Quart. J. Math. (Oxford) Ser. 12, 1941, 112–128 | DOI | MR
[15] Hasanov A., Srivastava H. M., “Some decomposition formulas associated with the Lauricella function $F_A^{(r)}$ and other multiple hypergeometric functions”, Applied Mathematic Letters, 19:2 (2006), 113–121 | DOI | MR | Zbl
[16] Hasanov A., Srivastava H. M., “Decomposition Formulas Associated with the Lauricella Multivariable Hypergeometric Functions”, Computers and Mathematics with Applications, 53:7 (2007), 1119–1128 | DOI | MR | Zbl
[17] Ergashev T. G., Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients, 9 pp., arXiv: 1805.03826