@article{VTGU_2018_55_a2,
author = {V. N. Krutikov and N. S. Samoilenko},
title = {On the convergence rate of the subgradient method with metric variation and its applications in neural network approximation schemes},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {22--37},
year = {2018},
number = {55},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a2/}
}
TY - JOUR AU - V. N. Krutikov AU - N. S. Samoilenko TI - On the convergence rate of the subgradient method with metric variation and its applications in neural network approximation schemes JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2018 SP - 22 EP - 37 IS - 55 UR - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a2/ LA - ru ID - VTGU_2018_55_a2 ER -
%0 Journal Article %A V. N. Krutikov %A N. S. Samoilenko %T On the convergence rate of the subgradient method with metric variation and its applications in neural network approximation schemes %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2018 %P 22-37 %N 55 %U http://geodesic.mathdoc.fr/item/VTGU_2018_55_a2/ %G ru %F VTGU_2018_55_a2
V. N. Krutikov; N. S. Samoilenko. On the convergence rate of the subgradient method with metric variation and its applications in neural network approximation schemes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 22-37. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a2/
[1] Vorontsov K. V., Course of lectures “Mathematical methods of learning by precedents”
[2] Khaikin S., Neural networks: a full course, Williams, M., 2006, 1104 pp.
[3] Osovski S., Neural networks for information processing, Goryachaya liniya - Telecom, M., 2016, 448 pp.
[4] Gorban A. N., Training of neural networks, USSR - USA JV Paragraph, M., 1990, 160 pp.
[5] Burnaev E. V., Prikhodko P. V., “On a method for constructing ensembles of regression models”, Autom. Remote Control, 74:10 (2013), 1630–1644 | DOI | MR | Zbl
[6] Gorbachenko V. I., Zhukov M. V., “Solving boundary value problems of mathematical physics using radial basis function networks”, Comput. Math. and Math. Phys., 57:1 (2017), 145–155 | DOI | DOI | MR | Zbl
[7] Kretinin A. V., “The weighted residuals method based on neural net trial functions for simulation of hydrodynamics problems”, Siberian J. Num. Math., 9:1 (2006), 23–35 | Zbl
[8] Tikhonov A. N., Arsenin V. Ya., Methods for solving ill-posed problems, Nauka, M., 1986
[9] Krutikov V. N., Aryshev D. V., “Algorithm of sequential screening of non-informative variables of a linear model”, Bulletin of Kemerovo State University, 2004, no. 3(7), 124–129
[10] Li Wang, Ji Zhu, Hui Zou, “The doubly regularized support vector machine”, Statistica Sinica, 16:2, 589–615 | MR | Zbl
[11] Tatarchuk A., Mottl V., Eliseyev A., Windridge D., “Selectivity supervision in com-bining pattern-recognition modalities by feature- and kernel-selective Support Vector Machines”, Proc. of the 19$^{{\mathrm th}}$ Int. Conf. on Pattern Recognition, v. 1–6, IEEE, 2008, 2336–2339
[12] Tatarchuk A., Urlov E., Mottl V., Windridge D., “A support kernel machine for supervised selective combining of diverse pattern-recognition modalities”, Multiple Classifier Systems, Lecture Notes In Computer Science, 5997, Springer-Verlag, Berlin–Heidelberg, 2010, 165–174 | DOI
[13] Alkezuini M. M., Gorbachenko V. I., “Improving the training algorithms for the networks of radial basis functions for solving approximation problems”, Modeli, sistemy, seti v ekonomike, tekhnike, prirode i obshchestve - Models, systems, networks in economics, engineering, nature and society, 2017, no. 3 (23), 123–138
[14] Polyak B. T., Introduction to optimization, Nauka, M., 1983
[15] Dennis J., Schnabel R., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Mir, M., 1988
[16] Marquardt D. W., “An algorithm for least-squares estimation of nonlinear parameters”, J. Society for Industrial and Applied Mathematics, 11:2 (1963), 431–441 | DOI | MR | Zbl
[17] Shore N. Z., Minimization Methods for Non-Differentiable Functions, Naukova Dumka, Kiev, 1979
[18] Wolfe Ph., “Note on a method of conjugate subgradients for minimizing nondifferentiable functions”, Math. Program, 7:1 (1974), 380–383 | DOI | MR | Zbl
[19] Lemarechal C., “An extension of Davidon methods to non-differentiable problems”, Math. Program. Study, 3 (1975), 95–109 | DOI | MR | Zbl
[20] Nurminskii E. A., Thien D., “Method of conjugate subgradients with constrained memory”, Autom. Remote Control, 75:4 (2014), 646–656 | DOI | MR | Zbl
[21] Krutikov V. N., Vershinin Ya. N., “The subgradient multistep minimization method for nonsmooth high-dimensional problems”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika - Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 3(29), 5–19
[22] Krutikov V. N., Vershinin Ya. N., “Subgradient minimization method with descent vectors correction based on pairs of training relations”, Bulletin of Kemerovo State University, 2014, no. 1-1 (57), 46–54 | DOI
[23] Krutikov V. N., Gorskaya T. A., “A family of subgradient relaxation methods with rank 2 correction of metric matrices”, Ekonomika i mat. metody - Economy and math. methods, 45:4 (2009), 37–80 | Zbl
[24] Krutikov V. N., Petrova T. V., “Relaxation method of minimization with space extension in the subgradient direction”, Ekonomika i mat. metody - Economy and math. methods, 39:1 (2003), 106–119 | Zbl
[25] Karmanov V. G., Mathematical programming, Nauka, M., 1980
[26] Tibshirani R. J., “Regression shrinkage and selection via the lasso”, J. Royal Statistical Society. Series B (Methodological), 58:1 (1996), 267–288 | DOI | MR | Zbl
[27] Tou J. T., Gonzalez R. C., Pattern recognition principles, Addison-Wesley, Reading, MA, 1974 | MR | Zbl
[28] Conn A. R., Gould N. I. M., Toint P. L., Trust regions methods, Society for Industrial and Applied Mathematics, 2000, 959 pp. | MR
[29] Goodfellow J. et al., Deep Learning, MIT Publ., 2016 | MR | Zbl
[30] Sutskever I., Martens J., Dahl G., Hinton G., “On the importance of initialization and momentum in deep learning” (Atlanta, Georgia, 2013), PMLR, 28, Proc. 30th Int. Conf. on Machine Learning, 1139–1147