The structure of integrals of the second Loewner–Kufarev differential equation in a particular case
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 12-21
Cet article a éte moissonné depuis la source Math-Net.Ru
In the geometric theory of functions of a complex variable, the first and the second Loewner–Kufarev differential equations are well known. Considering the first one of them, I. E. Bazilevich pointed out the class of univalent functions in a unit circle, now known as I. E. Bazilevich's class. This paper shows that I. E. Bazilevich's formula can be derived by considering the second Loewner-Kufarev equation with a linear right-hand side. We have also studied a differential equation with a nonlinear right-hand side, rational in a particular case. The problem point in the latter case is to specify a parametric family of regular functions with a positive real part in the unit circle at each fixed value of the parameter. The two lemmas proved in the paper simplify the problem of constructing a right-hand side with a positive real part when considering nonlinear right-hand sides.
Keywords:
geometric theory of functions of a complex variable, Loewner–Kufarev differential equation.
@article{VTGU_2018_55_a1,
author = {O. V. Zadorozhnaya and V. K. Kochetkov},
title = {The structure of integrals of the second {Loewner{\textendash}Kufarev} differential equation in a particular case},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {12--21},
year = {2018},
number = {55},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a1/}
}
TY - JOUR AU - O. V. Zadorozhnaya AU - V. K. Kochetkov TI - The structure of integrals of the second Loewner–Kufarev differential equation in a particular case JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2018 SP - 12 EP - 21 IS - 55 UR - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a1/ LA - ru ID - VTGU_2018_55_a1 ER -
%0 Journal Article %A O. V. Zadorozhnaya %A V. K. Kochetkov %T The structure of integrals of the second Loewner–Kufarev differential equation in a particular case %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2018 %P 12-21 %N 55 %U http://geodesic.mathdoc.fr/item/VTGU_2018_55_a1/ %G ru %F VTGU_2018_55_a1
O. V. Zadorozhnaya; V. K. Kochetkov. The structure of integrals of the second Loewner–Kufarev differential equation in a particular case. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 12-21. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a1/
[1] Aleksandrov I. A., Methods of the geometric theory of analytical functions, Tomsk State University Publ., Tomsk, 2001, 220 pp.
[2] Aleksandrov I. A., Parametric continuations in the theory of univalent functions, Nauka, M., 1976, 344 pp.
[3] Avkhadiev F. G. et al., “The main results on sufficient conditions for an analytic function to be schlicht”, Russian Mathematical Surveys, 30:4 (1975), 1–63 | DOI | Zbl
[4] Bazilevich I. E., “On one case of integrability in quadratures of the Loewner–Kufarev equation”, Math. USSR Sb., 37:3 (1955), 471–476 | Zbl
[5] Kochetkov V. K., Zadorozhnaya O. V., Some problems of the analytical theory of differential equations and geometric theory of functions of a complex variable, KalmSU, Elista, 2014, 160 pp.