Flame propagation velocity in an aerosuspension of nanoscale aluminum powder
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 95-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of the combustion of aero-suspension of nanodispersed aluminum powder is presented. Modeling of the combustion of aluminum nanoparticles is implemented using the local mathematical model of the oxidizer diffusion through aluminum oxide layer on the surface of the particle with account for its reaction with aluminum. The rate of oxidation of aluminum particles and the associated rate of heat release are determined from the solution of local problems on the combustion of aluminum nanoparticles. The state parameters of the aero-suspension of aluminum nanoparticles in the air are determined from the solution of the system of equations of energy conservation for gas and particles, and the equation of mass conservation for components of the gas-dispersed mixture. A developed model does not require specification of the ignition temperature of aluminum nanoparticles. Numerical solution of the stated problem allowed one to obtain the dependence of the propagation velocity of combustion front on the mass concentration of nanodispersed aluminum powder in the air and on the initial temperature of aluminum powder. Propagation velocity of combustion front was found to increase with increasing initial temperature and mass concentration of the powder.
Keywords: aero-suspension of nanodispersed aluminum powder, processes in a gas phase, mathematical modeling.
Mots-clés : combustion rate
@article{VTGU_2018_53_a8,
     author = {A. Yu. Krainov and V. A. Poryazov and K. M. Moiseeva},
     title = {Flame propagation velocity in an aerosuspension of nanoscale aluminum powder},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {95--106},
     year = {2018},
     number = {53},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_53_a8/}
}
TY  - JOUR
AU  - A. Yu. Krainov
AU  - V. A. Poryazov
AU  - K. M. Moiseeva
TI  - Flame propagation velocity in an aerosuspension of nanoscale aluminum powder
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 95
EP  - 106
IS  - 53
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_53_a8/
LA  - ru
ID  - VTGU_2018_53_a8
ER  - 
%0 Journal Article
%A A. Yu. Krainov
%A V. A. Poryazov
%A K. M. Moiseeva
%T Flame propagation velocity in an aerosuspension of nanoscale aluminum powder
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 95-106
%N 53
%U http://geodesic.mathdoc.fr/item/VTGU_2018_53_a8/
%G ru
%F VTGU_2018_53_a8
A. Yu. Krainov; V. A. Poryazov; K. M. Moiseeva. Flame propagation velocity in an aerosuspension of nanoscale aluminum powder. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 95-106. http://geodesic.mathdoc.fr/item/VTGU_2018_53_a8/

[1] Biryukov Yu.A., Buznik V. M., Dunaevskiy G. E., Ultrafine and nanosized powders: creation, structure, production, and application, Izd-vo NTL, Tomsk, 2009

[2] Gromov A. A., Il'in A.P., Ditts A. A., Physics and chemistry of combustion of metal nanopowders in nitrogen-containing gases, Izd-vo Tomskogo Universiteta, Tomsk, 2007

[3] Yagodnikov D. A., Ignition and combustion of powdered metals, MGTU im. N. E. Baumana, M., 2009

[4] Huang Y., Risha G. A., Yang V., Yetter R. A., “Effect of particle size on combustion of aluminum particle dust in air”, Combustion and Flame, 2009, no. 156, 5–13 | DOI | Zbl

[5] Krainov A. Yu., Poryazov V. A., “Mathematical modeling of combustion of a frozen suspension of nanosized aluminum”, Combustion, Explosion and Shock Waves, 52:2 (2016), 177–183 | DOI

[6] Poryazov V. A., Krainov A. Yu., “Mathematical model and calculation of the unsteady combustion rate of metallized solid rocket propellants”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 50, 99–111

[7] Beckstead M. W., “Correlating aluminum burning times”, Combustion, Explosion and Shock Waves, 41:5 (2005), 533–546 | DOI

[8] Sundaram D. S., Yang V., Zarko V. E., “Combustion of nano aluminum particles (Review)”, Combustion, Explosion and Shock Waves, 51:2 (2015), 173–196 | DOI

[9] Bazyn T., Krier H., Glumac N., “Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves”, Combustion and Flame, 145:4 (2006), 703–713 | DOI

[10] Schlunder E. U., Spalding D. B., Taborek J., Heat Exchanger Design Handbook: HEDH. Heat exchanger theory, VDI-Verlag, 1987