On numerical estimates of the parameters of localized plasticity during metal tension
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 83-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the results of a study of the nature and quantitative characteristics of localized plastic flow of metals under uniaxial tension using speckle photography method. It has been revealed that, in the solid bodies, plastic deformation tends to localize on the macro-scale level ranging from the yield stress to the failure. Localization phenomenon represents a spontaneous layering of the material into non-deforming and actively deforming volumes, which are arranged over the test sample in the form of specified patterns. Each pattern transforms consistently in accordance with a plastic flow development. Moreover, the patterns are defined by the law of strain hardening acting at the given stage of plastic flow. The patterns appear in the following order: (i) switching autowave; (ii) phase autowaves; and (iii) stationary dissipative structures. At the pre-fracture stage, the collapse of autowaves is observed. A quantitative analysis of the results obtained has been carried out. The elastoplastic strain invariant has been determined experimentally. The nature of this invariant has been also discussed. According to the latter, development of the plastic deformation occurs due to autowave processes of localized plasticity that, in turn, depends on the elastic deformation. Hence, both types of deformation are interdependent and defined by the plastic flow diagram. It has been demonstrated that a theoretical simulation can be used to predict the parameters of autowaves of localized plastic flow in deformable alloys. In the considered approach, the plastic deformation is regarded as a result of self-organization process, which occurs in an active deformed system with nonlinear structural defects.
Keywords: localization of deformation, plastic flow, autowaves, double-exposure speckle photography.
@article{VTGU_2018_53_a7,
     author = {L. B. Zuev and S. A. Barannikova and Yu. V. Li and A. M. Zharmukhambetova},
     title = {On numerical estimates of the parameters of localized plasticity during metal tension},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {83--94},
     year = {2018},
     number = {53},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_53_a7/}
}
TY  - JOUR
AU  - L. B. Zuev
AU  - S. A. Barannikova
AU  - Yu. V. Li
AU  - A. M. Zharmukhambetova
TI  - On numerical estimates of the parameters of localized plasticity during metal tension
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 83
EP  - 94
IS  - 53
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_53_a7/
LA  - ru
ID  - VTGU_2018_53_a7
ER  - 
%0 Journal Article
%A L. B. Zuev
%A S. A. Barannikova
%A Yu. V. Li
%A A. M. Zharmukhambetova
%T On numerical estimates of the parameters of localized plasticity during metal tension
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 83-94
%N 53
%U http://geodesic.mathdoc.fr/item/VTGU_2018_53_a7/
%G ru
%F VTGU_2018_53_a7
L. B. Zuev; S. A. Barannikova; Yu. V. Li; A. M. Zharmukhambetova. On numerical estimates of the parameters of localized plasticity during metal tension. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 83-94. http://geodesic.mathdoc.fr/item/VTGU_2018_53_a7/

[1] Zuev L. B., Danilov V. I., Barannikova S. A., Physics of macrolocalization of plastic flow, Nauka, Novosibirsk, 2008

[2] Porubov A. V., Localization of nonlinear deformation waves, Fizmatlit, M., 2009

[3] Nicolis G., Prigogine I., Exploring complexity: An introduction, W.H. Freeman, New York, 1989

[4] Zuev L. B., Gorbatenko V. V., Pavlichev K. V., “Elaboration of speckle photography techniques for plastic flow analyses”, Measurement Sci. Tech., 21 (2010), 054014-1 | DOI

[5] McDonald R. J., Efstathiou C., Curath P., Engng J., “The wave-like plastic deformation of single crystals copper”, Mater. Technol., 131 (2009), 692 | DOI

[6] Fressengeas C., Beaudoin A., Entemeyer D., “Dislocation transport and intermittency in the plasticity of crystalline solids”, Phys. Rev. B, 79 (2009), 014108-1 | DOI

[7] Tret'yakova T. V., Tret'yakov M. P., Vil'deman V. E., “Estimate of measurements accuracy by using video-system of displacement and strain fields analysis”, Vestnik PermGTU. Mekhanika — PNRPU Mechanics Bulletin, 2 (2011), 92–100

[8] Shestopalov L. M., Deformation of metals and plasticity waves, Izd-vo AN SSSR, M.–L., 1958

[9] Barannikova S. A., “Dispersion of localization waves of plastic deformation”, Pis'ma v ZHTF, 30:8 (2004), 75–80 | Zbl

[10] Zuev L. B., Zarikovskaya N. V., Barannikova S. A., Shlyakhova G. V., “Autowaves of plastic flow localization and the Hall-Petch relationship in polycrystalline Al”, Metallofizika i noveyshie tekhnologii, 35:1 (2013), 113–127

[11] Danilov V. I., Zavodchikov S.Yu., Barannikova S. A., Zykov I.Yu., Zuev L. B., “Direct observation of an autowave of plastic deformation in a zirconium alloy”, Pis'ma v ZHTF, 24:1 (1998), 26–30

[12] Trubetskov D. I., Mchedlova E. S., Krasichkov L. V., Introduction to the theory of self-organizing open systems, Fizmatlit, M., 2002

[13] Malygin G. A., “Dislocation self-organization processes and crystal plasticity”, Uspekhi fizicheskikh nauk, 169:9 (1999), 979 | DOI

[14] Vladimirov V. I., Issues in the theory of defects in crystals, Nauka, L., 1987

[15] Babichev A. P., Babushkina N. A., Bratkovskiy A. M., Physical quantities. Handbook, Energoatomizdat, M., 1991

[16] Barannikova S. A., Ponomareva A. V., Zuev L. B., Vekilov Yu. Kh., Abrikosov I. A., “Significant correlation between macroscopic and microscopic parameters for the description of localized plastic flow auto-waves in deforming alloys”, Solid State Com., 152 (2012), 784–787 | DOI

[17] Martin R. M., Electronic structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, 2004, 624 pp. | DOI | Zbl

[18] Vitos L., Abrikosov I. A., Johansson B., “Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory”, Phys. Rev. Lett., 87 (2001), 156401–156404 | DOI

[19] Moruzzi V. L., Janak J. F., “Calculated thermal properties of metals”, Phys. Rev. B, 37 (1988), 790 | DOI

[20] Walle A. van de, Ceder G., “The effect of lattice vibrations on substitutional alloy thermodynamics”, Rev. Mod. Phys., 74 (2002), 11 | DOI

[21] Abrikosov I. A., Ruban A. V., Kats D. Ya., Vekilov Yu. H., “Electronic structure, thermodynamic and thermal properties of Ni-Al disordered alloys from LMTO-CPA- DFT calculations”, J. Phys.: Condens. Matter., 5 (1993), 1271 | DOI

[22] Abrikosov I. A., Nikonov A. Yu., Ponomareva A. V., Dmitriev A. I., Barannikova S. A., “Theoretical modeling of thermodynamic and mechanical properties of the pure components of Ti and Zr based alloys using the exact Muffin-Tin Orbitals Method”, Russian Physics Journal, 56:9 (2014), 1030–1038 | DOI

[23] Barannikova S. A., Zharmukhametova A. M., Nikonov A. Yu., et al., “Influence of stresses on structure and properties of Ti and Zr-based alloys from first-principles simulations”, IOP Conf. Ser.: Mater. Sci. Eng., 71 (2015), 012078 | DOI

[24] Abrikosov I. A., Ponomareva A. V., Nikonov A. Yu., et al., “Theoretical description of pressure-induced phase transitions: a case study of Ti-V alloys”, High Pressure Research, 35 (2015), 42–48 | DOI

[25] Al'shits V. I., Indenbom V. L., Dislocations in Solids, Elsevier, Amsterdam, 1986, 43 pp.

[26] Roytburd A. L., Physics of the strain hardening of single crystals, Naukova dumka, Kiev, 1972

[27] Murdie G., Mathematical Modelling. Population Models, Butterworths, London, 1976 | MR

[28] Zuev L. B., Semukhin B. S., “Some acoustic properties of a deforming medium”, Phil. Mag., 82:6 (2002), 1183–1193 | DOI

[29] Tomas T., Plastic flow and fracture in solids, Mir, M., 1964 | MR