On almost (para)complex Cayley structures on spheres $\mathbf{S}^{2,4}$ and $\mathbf{S}^{3,3}$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 22-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that almost complex structures exist on the six-dimensional sphere $\mathbf{S}^6$ but the question of the existence of complex (ie, integrable) structures has not been solved so far. The most known almost complex structure on the sphere $\mathbf{S}^6$ is the Cayley structure which is obtained by means of the vector product in the space $\mathbf{R}^7$ of the purely imaginary octaves of Cayley $\mathbf{Ca}$. There is another, split Cayley algebra $\mathbf{Ca'}$, which has a pseudo-Euclidean scalar product of signature $(4,4)$. The space of purely imaginary split octonions is the pseudo-Euclidean space $\mathbf{R}^{3,4}$ with a vector product. In the space $\mathbf{R}^{3,4}$, there are two types of spheres: pseudospheres $\mathbf{S}^{2,4}$ of real radius and pseudo sphere $\mathbf{S}^{3,3}$ of imaginary radius. In this paper, we study the Cayley structures on these pseudo-Riemannian spheres. On the first sphere $\mathbf{S}^{2,4}$, the Cayley structure defines an orthogonal almost complex structure $J$; on the second sphere, $\mathbf{S}^{3,3}$, the Cayley structure defines an almost para-complex structure $P$. It is shown that $J$ and $P$ are nonintegrable. The main characteristics of the structures $J$ and $P$ are calculated: the Nijenhuis tensors, as well as fundamental forms and their differentials. It is shown that, in contrast to the usual Riemann sphere $\mathbf{S}^6$, there are (integrable) complex structures on $\mathbf{S}^{2,4}$ and para-complex structures on $\mathbf{S}^{3,3}$.
Keywords: Cayley algebra, split Cayley algebra, split-octonions, vector product, almost complex structure, almost para-complex structure, six-dimensional pseudo-Riemannian spheres.
Mots-clés : $G2$ group
@article{VTGU_2018_53_a2,
     author = {N. K. Smolentsev},
     title = {On almost (para)complex {Cayley} structures on spheres $\mathbf{S}^{2,4}$ and $\mathbf{S}^{3,3}$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {22--38},
     year = {2018},
     number = {53},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_53_a2/}
}
TY  - JOUR
AU  - N. K. Smolentsev
TI  - On almost (para)complex Cayley structures on spheres $\mathbf{S}^{2,4}$ and $\mathbf{S}^{3,3}$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 22
EP  - 38
IS  - 53
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_53_a2/
LA  - ru
ID  - VTGU_2018_53_a2
ER  - 
%0 Journal Article
%A N. K. Smolentsev
%T On almost (para)complex Cayley structures on spheres $\mathbf{S}^{2,4}$ and $\mathbf{S}^{3,3}$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 22-38
%N 53
%U http://geodesic.mathdoc.fr/item/VTGU_2018_53_a2/
%G ru
%F VTGU_2018_53_a2
N. K. Smolentsev. On almost (para)complex Cayley structures on spheres $\mathbf{S}^{2,4}$ and $\mathbf{S}^{3,3}$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 22-38. http://geodesic.mathdoc.fr/item/VTGU_2018_53_a2/

[1] Agricola I., Bazzoni G., Goertsches J., et al., “On the history of the Hopf problem”, Diff. Geom. and Appl., 57 (2018), 1–9, arXiv: 1708.01068 [math.HO] | DOI | MR | Zbl

[2] Agricola I., Borówka A., Friedrich T., “S6 and the geometry of nearly Kahler 6-manifolds”, Diff. Geom. and Appl., 57 (2018), 75–86, 12 pp., arXiv: 1707.08591 [math.DG] | DOI | MR | Zbl

[3] Smolentsev N. K., “On almost complex structures on six-dimensional products of spheres”, Scientific Notes of Kazan State University, 151:4 (2009), 116–135 | Zbl

[4] Alekseevsky D. V., Kraglikov B. S., Winther H., “Homogeneous almost complex structures in dimension 6 with semi-simple isotropy”, Ann. Glob. Anal. Geom., 46 (2014), 361–387, arXiv: 1401.8187v2 [math.DG] | DOI | MR | Zbl

[5] Zhevlakov K., Slin'ko A., Shestakov I., Shirshov A., Rings close to associative, Nauka, M., 1978

[6] Yokota I., Exceptional Lie groups, 2009, arXiv: 0902.0431v1 math.DG

[7] Yokota I., “Non-compact Simple Lie Group $G_2'$ of Type $G_2$”, J. Fac. Sci. Shinshu University, 12:1 (1977), 45–52 | MR | Zbl

[8] Gray A., “Vector cross products on manifolds”, Trans AMS, 141 (1969), 465–504 | DOI | MR | Zbl

[9] Alekseevsky D. V., Medori C., Tomassini A., “Homogeneous para-Kahler Einstein manifolds”, Russ. Math. Surv., 64:1 (2009), 1–43 | DOI | DOI | MR | Zbl

[10] Hitchin N. J., “The geometry of three-forms in six dimensions”, J. Diff. Geom., 55 (2000), 547–576 | DOI | MR | Zbl

[11] Kobayashi S., Nomizu K., Foundations of Differential Geometry, v. 1, 2, Interscience Publ., New York–London, 1963 | MR | Zbl