Group of automorphisms of one class of formal matrix algebras
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 16-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of the automorphism group of a formal matrix algebra over a commutative ring has been found under certain conditions. The automorphism group of such algebra is a semidirect product of several subgroups consisting of automorphisms with a known structure. This is achieved due to the fact that the formal matrix algebra is represented as a splitting extension of a certain nilpotent ideal by means of the product of ordinary matrix rings.
Mots-clés : automorphism, formal matrix algebra
Keywords: semidirect product.
@article{VTGU_2018_53_a1,
     author = {P. A. Krylov and T. D. Norbosambuev},
     title = {Group of automorphisms of one class of formal matrix algebras},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--21},
     year = {2018},
     number = {53},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_53_a1/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - T. D. Norbosambuev
TI  - Group of automorphisms of one class of formal matrix algebras
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 16
EP  - 21
IS  - 53
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_53_a1/
LA  - ru
ID  - VTGU_2018_53_a1
ER  - 
%0 Journal Article
%A P. A. Krylov
%A T. D. Norbosambuev
%T Group of automorphisms of one class of formal matrix algebras
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 16-21
%N 53
%U http://geodesic.mathdoc.fr/item/VTGU_2018_53_a1/
%G ru
%F VTGU_2018_53_a1
P. A. Krylov; T. D. Norbosambuev. Group of automorphisms of one class of formal matrix algebras. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 16-21. http://geodesic.mathdoc.fr/item/VTGU_2018_53_a1/

[1] Anh P. N., van Wyk L., “Automorphism group of generalized triangular matrix rings”, Linear Algebra Appl., 434:4 (2011), 1018–1026 | DOI | MR | Zbl

[2] Anh P. N., van Wyk L., “Isomorphisms between strongly triangular matrix rings”, Linear Algebra Appl., 438:11 (2013), 4374–4481 | DOI | MR

[3] Khazal K., Dascalescu S., van Wyk L., “Isomorphism of generalized triangular matrix rings and recovery of tiles”, Int. J. Math. Sci., 2003, no. 9, 533–538 | DOI | MR | Zbl

[4] Boboc C., Dascalescu S., van Wyk L., “Isomorphisms between Morita context rings”, Linear and Multilinear Algebra, 60:5 (2012), 545–563 | DOI | MR | Zbl

[5] Kezlan T. P., “A note on algebra automorphisms of triangular matrices over commutative rings”, Linear Algebra Appl., 135 (1990), 181–184 | DOI | MR | Zbl

[6] Tang G., Li Ch., Zhou Y., “Study of Morita contexts”, Comm. Algebra, 42 (2014), 16681681 | DOI | MR

[7] Krylov P. A., “Isomorphism of generalized matrix rings”, Algebra and Logic, 47:4 (2008), 456–463 | DOI | MR | Zbl

[8] Abyzov A. N., Tapkin D. T., “Formal matrix rings and their isomorphisms”, Siberian Mathematical Journal, 56:6 (2015), 1199–1214 | DOI | MR | Zbl

[9] Krylov P. A., Tuganbaev A. A., Rings of formal matrices and modules over them, MCNMO, M., 2017

[10] Krylov P., Tuganbaev A., Formal matrices, Algebra and Applications, 23, Springer, 2017 | DOI | MR | Zbl