On symmetric cuts of a real-closed field
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates properties of a subfield of the field of bounded formal power series $\mathbf{R}[[G,\beta^+]]$, $|G|=cf(G)=\beta^+>\beta>\aleph_0$. We construct (under GCH) a real closed field $H$, $\mathbf{R}[[G,\beta]]\subset H\subset\mathbf{R}[[G,\beta^+]]$ which has symmetric cuts of cofinality $\beta^+$. We show that $H$ and $\overline{H(x_{\beta^+})}$ are truncation closed. We use G. Pestov's and S. Shelah's classifications of cuts (a symmetric cut and a non-algebraic cut).
Keywords: real closed field, truncation closed field, field of bounded formal power series, symmetric cut, cofinality of a cut.
@article{VTGU_2018_53_a0,
     author = {N. Yu. Galanova},
     title = {On symmetric cuts of a real-closed field},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--15},
     year = {2018},
     number = {53},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_53_a0/}
}
TY  - JOUR
AU  - N. Yu. Galanova
TI  - On symmetric cuts of a real-closed field
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 5
EP  - 15
IS  - 53
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_53_a0/
LA  - ru
ID  - VTGU_2018_53_a0
ER  - 
%0 Journal Article
%A N. Yu. Galanova
%T On symmetric cuts of a real-closed field
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 5-15
%N 53
%U http://geodesic.mathdoc.fr/item/VTGU_2018_53_a0/
%G ru
%F VTGU_2018_53_a0
N. Yu. Galanova. On symmetric cuts of a real-closed field. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 53 (2018), pp. 5-15. http://geodesic.mathdoc.fr/item/VTGU_2018_53_a0/

[1] Fuchs L., Partially ordered algebraic systems, Pergamon Press, 1963 | MR | Zbl

[2] Dales H. J., Woodin H., Super real fields, Clarenden Press, Oxford, 1996 | MR | Zbl

[3] van der Waerden B. L., Algebra, Springer, New York, 1971 | MR | Zbl

[4] Keisler H. G., Chang C. C., Model Theory, North-Holland, Amsterdam, 1973 | MR | Zbl

[5] Pestov G. G., The structure of ordered fields, TSU Publ., Tomsk, 1980

[6] Pestov G. G., “On the theory of cuts in ordered fields”, Sib. Math. J., 42:6 (2001), 1350–1360 (Russ.) | DOI | MR | Zbl

[7] Pestov G. G., To the theory of ordered fields and groups, Dis. Doct. fiz.-mat. nauk, 01.01.06, Tomsk, 2003

[8] Pestov G. G., “Investigations on ordered groups and fields in Tomsk State University”, Tomsk State University Journal of Mathematics and Mechanics, 2011, no. 3(15)

[9] Shelah S., “Quite complete real closed fields”, Israel J. Math., 142 (2004), 261–272, arXiv: math/0112212 | DOI | MR | Zbl

[10] Galanova N. Yu., “Symmetric and asymmetric gaps in some fields of formal power series”, Serdica Math., 30 (2004), 495–504 | MR | Zbl

[11] Robinson A., Introduction to model theory and to the metamathematics of algebra, North-Holland, Amsterdam, 1963 | MR | Zbl

[12] Galanova N. Y., Pestov G. G., “Symmetry of cuts in fields of formal power series”, Algebra and Logic, 47:2 (2008), 100–106 | DOI | MR | Zbl

[13] Galanova N. Yu., “Totally ordered fields with symmetric cuts”, Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 46, 14–20 | DOI

[14] Kuhlmann F.-V., Kuhlmann S., Marshall M., Zekavat M., “Embedding ordered fields in formal power series fields”, J. Pure and Applied Algebra, 169:1 (2002), 71–90 | DOI | MR | Zbl

[15] Mourgues M. H., Ressayre J. P., “Every real closed field has an integer part”, J. Symb. Logic, 58 (1993), 641–647 | DOI | MR | Zbl

[16] Alling N. L., “On the existence of real-closed fields that are $\eta_\alpha$-set of power $\aleph_\alpha$”, Trans. Amer. Math. Soc., 103 (1962), 341–352 | MR | Zbl

[17] Galanova N. Y., “Symmetry of sections in fields of formal power series and non-standard real line”, Algebra and Logic, 42 (2003), 14–19 | DOI | MR