Macrokinetics of combustion of layered compositions with a low-melting inert layer
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 102-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mathematical model of gasless combustion of a layered composition is considered. Inner layer of the composition consists of an inert low-melting metal. Other layers consist of a highly exothermic gasless mixture. In the inner layer, metal melts during combustion of the adjacent layers. Affected by surface tension forces, the melt flows into the porous combustion products of gasless mixture to form a composite material. The capillary flow of melt in the porous channels is limited by skeleton temperature equal to the melting point. The time spent for passing through an inert layer by combustion wave is found depending on the thickness and thermal conductivity of the layer. The modes of synthesis for layered composite materials in combustion regime are determined. The dynamics of structure formation of the composite materials is considered depending on the thickness of inner metal layer and on the external heat exchange coefficient.
Keywords: self-propagating high-temperature synthesis, porous medium, capillary flow, composite material, modeling.
@article{VTGU_2018_52_a9,
     author = {V. G. Prokof'ev and O. V. Lapshin and V. K. Smolyakov},
     title = {Macrokinetics of combustion of layered compositions with a low-melting inert layer},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {102--113},
     year = {2018},
     number = {52},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_52_a9/}
}
TY  - JOUR
AU  - V. G. Prokof'ev
AU  - O. V. Lapshin
AU  - V. K. Smolyakov
TI  - Macrokinetics of combustion of layered compositions with a low-melting inert layer
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 102
EP  - 113
IS  - 52
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_52_a9/
LA  - ru
ID  - VTGU_2018_52_a9
ER  - 
%0 Journal Article
%A V. G. Prokof'ev
%A O. V. Lapshin
%A V. K. Smolyakov
%T Macrokinetics of combustion of layered compositions with a low-melting inert layer
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 102-113
%N 52
%U http://geodesic.mathdoc.fr/item/VTGU_2018_52_a9/
%G ru
%F VTGU_2018_52_a9
V. G. Prokof'ev; O. V. Lapshin; V. K. Smolyakov. Macrokinetics of combustion of layered compositions with a low-melting inert layer. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 102-113. http://geodesic.mathdoc.fr/item/VTGU_2018_52_a9/

[1] Merzhanov A. G., Mukas'yan A. S., Solid-flame combustion, Torus Press, M., 2007

[2] Baideldinova A. N., Ksandopulo G. I., “Quasi-adiabatic self-propagating hightemperature synthesis in layered systems”, Inorganic Materials, 39:10 (2003), 1039–1042 | DOI

[3] Baideldinova A. N., Ksandopulo G. I., “Combustion in a system of conjugated layers and high-temperature synthesis of materials”, Russian Journal of Applied Chemistry, 77:3 (2004), 364–368 | DOI

[4] Sytschev A. E., Vre, D., Boyarchenko O. D., Roshchupkin D. V., Sachkova N. V., “Combustion synthesis in bi-layered (Ti-Al)/(Ni-Al) system”, J. Materials Processing Technology, 240 (2017), 60–67 | DOI

[5] Shchukin A. S., Sytschev A. E., “Fine structure of transition layer formed between NiAl melt and W substrate during self-propagating high-temperature synthesis”, Letters on Materials, 7:3 (2017), 244–248 | DOI

[6] Pisklov A. V., Prokof'ev V. G., Smolyakov V. K., “Gasless combustion of layered package under nonadiabatic conditions”, Proceedings of Higher Schools. Nonferrous Metallurgy, 2006, no. 5, 102–108

[7] Prokof'ev V. G., Smolyakov V. K., “On the theory of self-propagating high-temperature synthesis in layered systems”, Combustion, Explosion, and Shock Waves, 48:5 (2012), 636–641 | DOI

[8] Prokof'ev V. G., Smofyakov V. K., “Gasless combustion in two-layer structures: A theoretical model”, Intern. J. of SHS, 22:1 (2013), 5–10 | DOI

[9] Prokof'ev V. G., Smolyakov V. K., “Gasless combustion of a system of thermally coupled layers”, Combustion, Explosion, and Shock Waves, 52:1 (2016), 62–66 | DOI

[10] Aligozhina K. A., Knyazeva A. G., “Modeling the solid phase reaction distribution in the case of conjugate heat exchange”, Combustion, Explosion, and Shock Waves, 53:4 (2017), 411–419 | DOI

[11] Firsov A. N., Shkadinskiy K. G., “Nonstationary combustion regimes of gasless condensed substances periodically diluted by inert admixtures”, Combustion, Explosion, and Shock Waves, 24:6 (1988), 726–730 | DOI | Zbl

[12] Krishenik P. M., Merzhanov A. G., Shkadinskiy K. G., “Frontal transformation modes of structured energetic heterogeneous systems”, Combustion, Explosion, and Shock Waves, 41:2 (2005), 164–173 | DOI | Zbl

[13] Prokof'ev V. G., Smolyakov V. K., “On the theory of combustion and synthesis of composite materials in the field of mass forces”, Combustion, Explosion, and Shock Waves, 50:4 (2014), 387–392 | DOI

[14] Heyfits L. I., Neymark A. V., Multiphase processes in porous media, Chemistry, M., 1982

[15] Levich V., Physicochemical Hydrodynamics, Prentice Hall, 1962

[16] Frenkel J., Kinetic Theory of Liquids, Dover Publications, 1955 | MR

[17] Smotyakov V. K., Prokofiev V. G., “The theory of self-propagating high-temperature-synthesis of functionally gradient materials”, Int. J. SHS, 12:1 (2003), 1–10

[18] Krainov A. Yu., “Influence of thermophysical characteristics of an inert obstacle and heat losses on combustion wave propagation”, Combustion, Explosion, and Shock Waves, 23:6 (1987), 676–679 | DOI