Mathematical modelling of the spherical particle motion along an inclined surface in the shear flow
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 75-88
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the motion of a spherical particle along an inclined surface in the shear flow is studied. Different modes of the particle motion in the flow such as rolling, slipping, and sliding are analyzed. Investigation results show that the velocity of particle center of mass increases with an increase in particle diameter and the particle velocity becomes stationary rapidly. Variation in the angular velocity is characterized by an abrupt increase at the initial time instant which is followed by the particle rolling at a constant angular velocity. Initially, the motion of small particles is characterized by rolling without sliding but then it transfers into a slip mode.
Keywords: fluid mechanics, dispersed phase, rolling, sliding.
Mots-clés : suspension
@article{VTGU_2018_52_a7,
     author = {O. V. Matvienko and A. O. Andropova and A. V. Andriasyan and N. A. Mamadraimova},
     title = {Mathematical modelling of the spherical particle motion along an inclined surface in the shear flow},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {75--88},
     year = {2018},
     number = {52},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_52_a7/}
}
TY  - JOUR
AU  - O. V. Matvienko
AU  - A. O. Andropova
AU  - A. V. Andriasyan
AU  - N. A. Mamadraimova
TI  - Mathematical modelling of the spherical particle motion along an inclined surface in the shear flow
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 75
EP  - 88
IS  - 52
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_52_a7/
LA  - ru
ID  - VTGU_2018_52_a7
ER  - 
%0 Journal Article
%A O. V. Matvienko
%A A. O. Andropova
%A A. V. Andriasyan
%A N. A. Mamadraimova
%T Mathematical modelling of the spherical particle motion along an inclined surface in the shear flow
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 75-88
%N 52
%U http://geodesic.mathdoc.fr/item/VTGU_2018_52_a7/
%G ru
%F VTGU_2018_52_a7
O. V. Matvienko; A. O. Andropova; A. V. Andriasyan; N. A. Mamadraimova. Mathematical modelling of the spherical particle motion along an inclined surface in the shear flow. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 75-88. http://geodesic.mathdoc.fr/item/VTGU_2018_52_a7/

[1] Crowe C., Sommerfeld M., Tsuji Ya., Multiphase Flows with Droplets and Particles, CRC Press, N.Y., 1998, 472 pp.

[2] Kutepov A. M., Polyanin L. D., Zapryanov Z. D. et al., Chemical hydrodynamics, a textbook, Byuro Kvantum, M., 1996

[3] Ostrovskiy G. M., Applied mechanics of heterogeneous media, Nauka, Saint Petersburg, 2000

[4] Matvienko O. V., Evtyushkin E. V., “Mathematical study of hydrocyclone dispersed phase separation in clearing viscoplastic drilling fluids”, Journal of Engineering Physics and Thermophysics, 84:2 (2011), 241–250 | DOI | MR

[5] Fuchs N. A., The Mechanics of Aerosols, Macmillan, New York, 1964 | MR

[6] Arkhipov V. A., Usanina A. S., “Regimes of sedimentation of a consolidated system of solid spherical particles”, Fluid Dynamics, 52:5 (2017), 666–677 | DOI | DOI | MR | Zbl

[7] Arkhipov V. A., Usanina A. S., “Gravity sedimentation of a set of solid spherical particles in the regime of a partially blown cloud”, Journal of Engineering Physics and Thermophysics, 90:5 (2017), 1061–1068 | DOI | MR

[8] Matvienko O. V., Andropova A. O., “Studying the particle motion in a fluid flow in the vicinity of a movable wall”, Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 4, 85–92 | DOI

[9] Gondret P., Lance M., Petit L., “Bouncing motion of spherical particles in fluids”, Physics of fluids, 14:2 (2002), 643–652 | DOI

[10] Matvienko O. V. Daneyko A. M., “Investigation of the shock interaction between particles in a stream”, Russian Physical Journal, 56:9/3 (2013), 190–192

[11] Feuillebois F., Gensdarmes F., Mana Z., et al., “Three-dimensional motion of particles in a shear flow near a rough wall”, Journal of Aerosol Science, 96 (2016), 69–95 | DOI

[12] Bazilevskiy A. V., Rozhkov A. N., “Motion of a sphere down an inclined plane in a viscous flow”, Fluid Dynamics, 44:4 (2009), 566–576 | DOI

[13] Matvienko O. V., Evtyushkin E. V., “Theoretical investigation of the process of cleaning oil-polluted soil in hydrocyclone apparatuses”, Journal of Engineering Physics and Thermophysics, 80:3 (2007), 502–510 | DOI

[14] Matvienko O. V., Dueck J., “Numerical study of the separation characteristics of a hydrocyclone under various conditions of loading of the solid phase”, Theoretical Foundations of Chemical Engineering, 40:2 (2006), 203–208 | DOI

[15] Happel J., Brenner H., Low Reynolds number hydrodynamics: with special applications to particulate media, Prentice-Hall, 1965 | MR

[16] Matvienko O. V., Andropova A. O., Agafontseva M. V., “Influence of the regime of flow of particles from a hydrocyclone on its separation characteristics”, Journal of Engineering Physics and Thermophysics, 87:1 (2014), 24–37 | DOI

[17] Rubinow S. I., Keller J. B., “The transverse force on spinning sphere moving in a viscous fluid”, J. of Fluid Mech., 11:3 (1961), 447–459 | DOI | MR | Zbl

[18] Clift R., Grace J. R., Weber M. E., Bubbles, drops and particles, Academ Press, N.Y., 1978, 380 pp.

[19] Berkovich I. I., Gromakovskiy D. G., Tribology. Physical bases, mechanics, and technical applications, Samara State Technical University, Samara, 2000

[20] Bottner C. U., Sommerfeld M., “Numerical calculation of powder painting using the Euler/Lagrange approach”, Powder Technology, 125:2–3 (2002), 206–216 | DOI